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Measurement of Single-Crystal Elastic Constants of Bronzite
as a Function of Pressure and Temperature

A. L. Frisitro! axp G. R. Barscy?

Materials Research Laboratory, The Pennsylvania State University
Unwersity Park, Pennsylvania 16802

The nine single-crystal elastic constants of orthopyroxene, Mgo.sFen sSi0;, have been meas-
ured as a function of temperature from 25° to 350°C and at 25°C as a function of pressure to
10 kb by means of the ultrasonic pulse superposition technique. It was found that the shear
constants exhibited a distinctly nonlinear pressure dependence in addition to the usual linear
terms. Owing to the difficulty in obtaining precise data for the longitudinal modes above
approximately 4.5 kb, where curvature might be observed, only a linear pressure dependence
was found for the on-diagonal longitudinal constants. Because the second pressure derivatives
of the on-diazonal longitudinal constants (cn, =, and cw) enter the expressions required for
the evaluation of the second pressure derivatives of the off-diagonal constants (cis, €=, and ¢u),
the second derivatives of the ofi-diagonal constants are probably considerably in error. The
second pressure derivatives of the on-diagonal shear constants and of the unprocessed data
for the cross-coupling moduli, however, have been precisely and consistently measured and
represent the first observations of curvature for noncubic oxide materials. The dimensionless
quantities K(dcu/dP*) (where A denotes the bulk modulus, ¢.. denotes the elastic constants,
and P denotes the pressure) for the on-diagonal shear moduli are about ten times larger
than the corresponding quantities for the eight alkali halides for which these quantities
are known. The isotropic bulk and shear moduli and their pressure and temperature de-
rivatives calculated from the single-crystal data by means of the Voigt-Reuss-Hill (VRH)
approximation are K* = 1035 Mb, G = 0.749 Mb, (3K%/dP)r = 959, (3G /aP)r .= 238,
(0K%/aT), = —0268 kb°C™?, and (dG/dT), = —0.119 kb°C™. Owing to the large values of
the pressure derivatives of the longitudinal elastic constants cu, ¢», and especially cu, the
pressure derivative of the bulk modulus of orthopyroxene is approximately twice as large as
that for most other materials normally considered to be of importance in the earth’s mantle.
The ultrasonic equation of state calculated from the first-order Birch equation agrees well
with static-compression data and, below about 150 kb, with shock-wave data. The elastic
Grueneisen parameter calculated from the VRH approximation is found to be 309 larger
than the thermal Grueneisen parameter.

The single-crystal elastic constants of many
geophysically relevant materials have been ul-
trasonically measured by several authors as a
function of temperature and pressure (see, for
example, the compilations by Hearmon [1969]
and Bechmann [1969] and, in addition, those
by Graham and Barsch [1969] and Kumazawa
and Anderson [1969]). Available single-crystal
elastic data on pyroxenes, however, have been
limited by the paucity of suitable specimens of
sufficient size and quality on which to perform
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ultrasonic measurements. Single-crystal data
have been reported for six clinopyroxenes
[Alexandrov and Ryzhova, 1961; Alezandrov
et al., 1963] and two orthopyroxenes of the
bronzite variety [Ryzhova et al., 1966; Kuma-
zawa, 1969]. In none of these studies, however,
were the effects of elevated temperature and
pressure included. For orthopyroxene the tem-
perature and pressure dependence of compres-
sional- and shear-wave velocities has been meas-
ured [Birch, 1960; S‘mmons, 1964; Hughes and
Nishitake, 1963]. These measurements, however,
have been made on natural rock specimens in
which the problems of porosity, eracks, hetero-
geneity, and large grain size reduce the pre-
cision of the measurements, particularly those
of the temperature and pressure derivatives. In
addition, compressional- and shear-wave velocity
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TABLE 1. Quantitative Analysis of Bronzite Specimens by Atomic Absorption
(A1l values in wt %.)

Element Sample 1 Sample

Maximum

Sample 3 Sample 4 Difference

28.80
53.80
13.90
0.68
0.29
0.28
0.00
0.00
.0.00
97.75

30.10
54.80
13.60
0.60
0.18
0.24
0.00
0.00
0.06
99.58

Mg0

Si0z

Fep03*

A1,03

Ca0

MnO

Nazo

BaQ

NiO
Total

30.30
54.00
14.90
1.00
0.50
0.25
0.43
0.04
0.00
101.42

30.80
54.00
14.40
0.79
0.50
0.24
0.09
0.04 .

0.00
100.86

OO0 OoOOCO=KHN

" Mier v
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Detected spectrographically in trace
Ca, Cu, Ti.

*All iron expressed as ferrous iron.

data as well as temperature and pressure de-
pendence were obtained from different speci-
mens with varying compositions by several in-
vestigators. Therefore, for a more complete
understanding of materials thought to be of
importance in the earth’s mantle, it is necessary
to obtain elasticity data for members of the
pyroxene family as a function of temperature
and pressure. The purpose of this paper is to
present precise data for the single-crystal elastie
constants of natural orthopyroxene and their
temperature and pressure derivatives.

EXPERIMENTAL PROCEDURE

 Four natural single-crystal orthopyroxene
samples from India (purchased from the Com-
mercial Mineral Company, New York) were
~used in this investization. A quantiiative anal-
ysis using atomie absorption was performed by
R. E. Raver of the Pennsylvania State Univer-
sity Mineral. Constitution Laboratory (Table
1). The mean molecular formula as determined
from these data is approximately Mg, Fe, .SiOs.
The specimens are therefore of the bronzite
variety. -

~ Orthopyroxene belongs to the orthorhombic
space group Pbca [1Wyckoff, 1968]. Therefore
nine second-order elastic constants are necessary
to describe the elastie behavior of the erystal.
In the Voigt notation they are cy, Cu,
Cer, iz, €1, and ¢ All the on-diagonal moduli
¢.. (no summation convention) can be deter-

Cy, Cy, Css,

amounts for all samples:

€, Y, In, ' Zr,

mined from ultrasonic velocity measurements in
pure-mode directions parallel to the crystallo-
graphic a, b, and c axes, which also provide
cross checks on ¢, ¢, and cs. The three cross-
coupling modull (cs., €5, and ¢) can be deter-
mined from three different propagation direc-
tions perpendicular to one of the orthogonal
cerystallographic axes and oblique to the remain-
ing two. Therefore three different orientations
are necessary to determine the cross-coupling
moduli in addition to the pure-mode orienta-
tions. The equations used for the ealculation of
the elastic constants and their first and second
pressure derivatives for these orientations can
be determined from the Christoffel equations
and have been given by Fisher and McSkimin
[1958], Graham [1969], and Barsch and Frisillo
[1973]. Because no single specimen was large
enough to determine all nine of the elastic con-
stants and because the specimens have approxi-
mately the same chemical composition, it was
decided to use all four specimens.

" Figure 1 illustrates the orientation of the four
samples. Specimen 1 was used for determining
the on-diagonal moduli, and specimens 2, 3, and
4 were used for defermining the cross-coupling
moduli. In addition, propagation directions
parallel to the z axis for specimens 2, 3, and 4
(Figure 1) were also used to measure the re-
spective on-diagonal moduli, which could then
be compared with data from specimen 1. In
this way the resulis from the four different
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Fig. 1. Orientation of specimens used for the
elastic-constant measurements.

samples could be examined for consistency.
Sample 2, which would have been used to de-
termine the on-diagonal moduli corresponding
to the [001] propagation direction, cleaved
while it was being ground. As a result, further
attempts at grinding the (001) face were not
made. Specimens 3 and 4, however, were suc-
cessfully prepared, and checks could be made
on the elastic constants obtained from propaga-
tion directions parallel to [100] and [010].

All =mple faces were oriented by using the
Laue back-reflection technique and are accurate
to better than 1°. The faces of the samples
were ground flat by using #320 silicon carbide
powder and were polished with 1-p diamond
paste. The sample faces were found to be paral-
lel to within 0.0001 cm/cm and flat to within
0.0001 cm. Sample thickness was measured by
using a Starrett 221 micrometer with a stated
accuracy of =0.00003 cm. The densities of the
specimens were determined by using the usual
liquid immersion method (Table 2). A mean
density of 3.354 == 0.002 g/cm® was adopted
for all calculations.

The adiabatic elastic constants and their tem-
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perature and pressure dependence were deter-
mined by measuring the transit times of 20-
MHz ultrasonic waves between parallel faces
by using the pulse superposition technique of
McSkimin [1961]. Two different ultrasonic pulse
superposition units, which have been designated
MRL PSP AFC and Arenberg PSP AFC, were
used in the present study. Unless it is otherwise
specified, the MRL unit has been used to obtain
the acoustic data presented in this study. A
complete description of these units, including
the automatic peak finder, which electronically

‘detects the correct echo maximum, has been

given in detail by other authors [Gieske, 1968;
Miller, 1969]. The pressure apparatus has been
described previously by Bogardus [1964].

For determining the zero pressure elastic con-
stants and during the pressure tests, the tem-
perature of the specimens was maintained at
25.0 = 1.0°C by circulating water through a
copper tubing jacket wrapped around the out-
side of the pressure vessel with a Lauda con-
stant temperature circulator (model NBS-HT).
The temperature and the temperature gradient
of the specimens were monitored by two chromel-
alumel thermocouples placed in proximity to
two different faces of the specimen. The ther-
mal emf’s were measured before and after each
measurement on a Leeds and Northrup K-3
potentiometer by using an-ice bath reference,
and a negligible temperature gradient was indi-
cated within the specimens.

Pressure in the vessel was provided by com-
pressing argon gas with a Harwood two-stage
gas compressor system. The pressure in the test
vessel was measured by a manganin cell in con-
junction with a Carey-Foster bridgze (model C,
Harwood Engineering Company) calibrated
prior to each pressure run.

The temperature dependence of the elastic
constants was determined by using an internal
furnace made of a cylindrically wound coil of

TABLE 2. Densitites of Bronzite Specimens at 25°C

Specimen Density, g/cm?
1 3.354 * 0.001

2 3.355 % 0.001

3 3.355 * 0.001

4 3.351 * 0.001
Average 3.354 ¢+ 0.002
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Kanthal wire that fits within the 2-inch diam-
eter of the hore of the pressure vessel. By using
the thermocouple arrangement described for the
pressure tests, a maximum variation of =1.5°C
was maintained during all temperature meas-
urements. To minimize the effects of oxidation
of the bore and the sample-hclding device, the
system was purged with argon gas prior to each
temperature run. Natural quartz ac- and cross-
cut transducers having diameters of 0.250 inch
and resonance frequencies of 20 MHz == 19
(purchased from the Valpey Corporation, Hol-
liston, Massachusetts) were used to generate
and receive the transverse and longitudinal ultra-
sonic wave pulses, respectively. Two types of
bonding materials were used to cement the
transducers to the sample faces. At room tem-
perature, for measuring the eclastic constants
and their pressure dependence, non-aq stopcock
grease (Fisher Scientific Company) was used.
For high-temperature measurements Extemp
9901 (Lubrication Engineering Company) was
found to be satisfactory to approximately 350°C,
at which point it became dry and was no longer
functional.

EXPERIMENTAL RESTULTS

Elastic constants at 25°C and 1 atm. By using
the orientations shown in Figure 1 and the

TABLE 3.
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equations of Fisher and McSkimin [19538], the
adiabatic elastic constants ¢,,® were determined
(Table 3). The corresponding sample numbers,
propagation directions N, and polarization direc-
tions U used to obtain the ¢, are also included
in this table. When it is considered that four
different natural specimens were used, the con-
sistency of the data is quite remarkable.
Because calculation of the ecross-coupling
moduli depends on the direction cosines of the
propagation directions, it is necessary to deter-
mine these quantities accurately. They were
determined by the method proposed by Fisher
and McSkimin [1958]. Because each cross-
coupling modulus may be determined by either
a ‘quasi-shear’ or a ‘quasi-longitudinal’ elastic-
wave velocity, the propagation angles and the
associated elastic constants can be calculated
simultaneously. The calculated angles and the
pure transverse mode cross check afforded by
the pure transverse mode relations are listed in
Tables 4 and 5. Despite small compositional
variations, the method of Fisher and McSkimin
leads to a maximum difference of only 0.6% in
the calculated and measured values of pV*

. (Table 4). This check justifies the application

of this method, even though four different speci-
mens were used.

Velocities of Pure Modes and Calculated Values of the

Adiabatic On-Diagonal Elastic Constants at 25°C

Elastic
Constant

Thickness d,

Velocity,
Sample N [} mm

km/sec

s
Average cyy
Mb

S
cﬁg

[100]
~ [r00]

_ [010]
[o10]

[100]
{100]

6.696
6.794

8.255
8.253

2.286
©2.285

en 2.286 % 0.001

{o10]
{o1o0]

7.176
7.664

6.915
6.920

1.604
1.606

¢22 1.605 + 0.001

* [oo1] [oo1]
010] . [oo01
010 001
001 010

6.783 7.920 2.104 2.104 £ 0.001*

€33
7.664
7.176
7.683

4.934
4.940
4.936

0.8167
0.8184
0.8174

Cuy

o O I~ S

0.8175 * 0.0009

4.745
4.744
4.741

6.794
. 6.69
7.683

100 001
100 001
001 100

0.7553 <
0.7551 0.7548 % 0.0007
0.7541

bt LN

0.7772
0.7759
0.7763
0.7768

6.794
6.696
7.664
7.196

100 010
100 010
010 100
010 100

4.814
4.809
4.810
4.813

0.7766 * 0.0005

N

*Error assumed to be equal to that of cj; andezj.
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TABLE 4. Calculated Propagation Directions for
s Cross-Coupling Constants and Associated Pure-Mode Checks
Associated . Calculated Measured
_ Elastic . Direction Pure-Mode -PIE, V2,
Constant Sample N Cosine Angle Relation Mb Mb
013 4 [Zon] 7 = 0.8332  33°34' 12¢c55 + nlcyy 0.7910 0.7960
® =
n = 0,5529  56°26' = poVg,
e12 2 [Zm0) 1 = 0.7437  41°57' 12¢g5 + micyy 0.7828 0.7874
: m= 0.6685  48°03' = poV,
53
e23 3 [0m] m-= 0.7590  40°37' m2cgg + necss 0.7673 0.7664
n = 0.6510  49°23' = pg¥,?

The known experimental errors occurring for
the elastic-constant measurements are 0.029
for specimen thickness, 0.003% for specimen
orientation, and 0.069% for specimen density.
. Because many of the moduli were measured on
two sets of ultrasonic units that gave results
identical to those in Table 3, systematic errors
resulting from the ultrasonic equipment are
considered negligible. Adding the known experi-
mental errors gives a total probable error of
0.083%. Although this estimate of the known
experimental error is a generous one, it does not '
completely account for the experimentally ob-
served deviations in the values of the elastic
constants.- This fact, however, is not surprising,
since four different specimens of slightly differ- -
ent compositions were used in this study. Be-
cause an appropriate compositional correction
is not known, possible errors occurring in the
measurements owing to compositional variations
cannot be accounted for. In addition, because

TABLE 5.

slight inhomogeneities are known to occur for
most natural specimens, a second possible un-
known correction term must be ignored. Con-
sequently, a comprehensive . estimate of the
probable error in the experimental determina-
tion of the elastic constants is not possible. As
a result, the scatter in the values obtained from
the various modes and the cross checks for the -
on-diagonal moduli are taken to be indicative
of the probable error in their measurements.
Because the equations used for calculating
the ecross-coupling moduli depend on other on-
diagonal moduli, on the direction cosines, and
on the measured values of pV¥ it is apparent
that their associated probable errors are con-
siderably larger than those for the on-diagonal
moduli. A reasonable estimate of the probable
errors for the cross-coupling moduli may be
determined from the Gaussian error propaga-
tion law. In this manner the probable errors
given in Table 5 were obtained from the errors

Velocities of Quasi-Modes and Calculated Values of the

Adiabatic Cross-Coupling Elastic Constants at 25°C

Elastic - Thickness d, Velocity, cws,
Constant  Sample N mm km/sec Mb
c23 3 [Omn] 8.641 Vgs.= 4.515 0.460 * 0.002
va = 7.624
c13 4 [Z0n] 5.054 Vgs = 4.914 0.548 * 0.002
V., = 8.055
ap
c13 2 _ [Zm0] 6.588 Vas = 4.245 0.710 * 0.002

8.014

Yop
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of the on-diagonal moduli, pV* and the direc-
tion cosines. .

Pressure dependence of ffective second-order
elastic constants. The basie data neecessary to
determine the isothermal pressure derivatives
of the effective second-order adiabatie elastic
constants are the transit time of the ultrasonic
wave at elevated pressure £, and the specimen
thickness at zero pressure d.. From these data
the natural wave velocity W [Thurston and
Brugger, 1964] can be calculated at each ex-
perimental pressure by using W = 2d./t,. The
pressure dependence of the quantity p,JV* can
be expressed by the first .\ expansion terms of
the Taylor series: ' : :

N

e = 2 ANEY)  (19)

;: n=0
oW’ = polVo’ + (po1F7)'P
; + (pW?)""P*/2 + ---  (1B)

The first term on the right-hand side of (1b)
represents the zero pressure value of the respee-
tive on-diagonal elastic constant, or the quanti-
ties p,Vos® or p.Ves® used in computing the off-
diagonal moduli. The remaining two quantities,
(pol1#)” and (p,J17%)”/2, are, according to the
equations of Graham [1969] and Barsch and
Frisillo [1972], related to the first and second
pressure derivatives of the elastic constants,
respectively.

In this study all data were fitted to first-,
second-, and third-order polynomials, and the
resulting coeflicients and  standard deviations
were examined for best fit. On the basis of the
criteria discussed in the appendix, the data for
the longitudinal modes are found to fit the first-
order polynomial best in all cases. The data for

‘the shear and’ quasi-shear modes, however, re-

quired a second-order fit, and thus a statistically
significant nonlinearity was indicated. As is
shown in the appendix, a fit to a third-order

-~

1.08 : .

N = [oon
U =10011]

N = [0101]
U =[0I01

/] i |

\

(ng)

8 10 12

Pressure (Kb)

Fig. 2. Experimental data of (t/t:)* as a function of pressure for the on-diagonal moduli
€n, €=, and cx. Solid and open circles. solid triangles, and open squares indicate specimen 1;
open triangles, specimen 3; solid squares, specimen 4.
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polyno;nial could not be justified for any of the
shear or quasi-shear modes, with the exception
of three modes belonging to the moduli ¢,, and
css. These three modes represent borderline cases
and were for the sake of uniformity also fitted
to second-order polynomials.

In all, 23 pressure tests were performed on the
four specimens used in this study. In this way
many cross checks of the pressure dependence
of the elastic constants resulting from different
propagation directions in the specimens could be
examined for consistency. As typical examples
of unprocessed pressure data, the normalized
quantity (to/t,)? = (WV/W,)?, where ¢, denotes
the transit time at zero pressure, is plotted
versus pressures for the modes corresponding to
the on-diagonal longitudinal moduli (Figure 2)
and for those corresponding to the shear modulus
css and the cross-coupling modulus ¢,; (Figure 3).
To illustrate the nonlinearity for the shear modes,
the initial slope for N = [001] and U = [100]

FRISILLO AND BaRscH

(css) (Figure 3) has been linearly extrapolated
to higher pressures. It is also apparent (Figure 3)
that the quasi-shear mode corresponding to ¢
also shows a distinctly nonlinear behavior. All
solid lines in this figure represent the quadratic
least-squares fit according to

(w/ Wo)z = (’o/tr)2 .
=14 (W /WSYP + (W/W,)""P*/2 (2)
For calculating the first pressure derivatives

-of the elastic constants from the measured

values of (p,#V?)’, the isothermal single-crystal
bulk modulus K," and the isothermal compli-
ance coefficients S,,” are required. The adiabatic
single-crystal bulk modulus can be determined
from the general expression

Ko® = (S:uii)™ (3
and converted to its isothermal counterpart by
Overton’s [1962] equation 2. This equation
gives K, = 1.021 Mb and K, = 0.998 Mb.

I T Ql frofl T T
- uadratic .
103 N = [OO0I] fit \
(Cas) Initial
| . i i
U= [1001 Siope /
" F 4
/
— ’ -
N = (1001 (Cua) i
u=toon >°
1.02— —
<.
E § N ¥4
2 Il ££0n] (Cs)
- U tnof2 =
1.01}— -
r .
|.00 a ] 1 1 1 1
0 2 4 [ 8 10 12

Pressure ( Kb)

Fig. 3. Experimental data of (&/¢,)* as a function of pressure for the elastic moduli css
and cus. Solid squares and solid circles indicate specimen 1; open squares, specimen 3; solid

and open triangles, specimen 4.
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TABLE 6.  Adiabatic and Isothermal Elastic Compliance Coefficients at 25°C
(A1l values in Mb'1.)

Coefficient Adiabatic Isothermal

0.5253
0.7453
0.5231
1.223
1.325
1.288

0.5259
0.7474
0.5259
Y223
1.325
1.288

-0.2053
-0.0914
-0.1095

-0.2029
-0.0886
-0.1070

The adiabatic compliance coefficients can be
determined by inversion of the adiabatic clastic-
constant matrix, and the isothermal compliance
coefficients can be calculated from Thurston
[1967]:

S.-.'ur = Sems e (Ta-'.,ﬂu/PoCP) (4)

where a,; are the linear thermal-expansion co-

efficients, T is the temperature, and C, is the

specific heat at constant pressure. The thermal-
expansion coefficients of bronzite used were
determined by Frisillo and Buljan [1972], and
the specific heat was calculated from the present
elastic data [Anderson, 1965]. The value ob-
tained for C, = 94.66 mole™ °K™. The adiabatic
elastic compliances are tabulated in Table 6
together with the isothermal values calculated
from the preceding data.

First pressure derivatives of effective second-
order elastic constants. The isothermal first
pressure derivatives of the adiabatic effective
elastic constants were calculated by using the
equations given by Graham [1969] and Barsch
and Frisillo [1973] (Table 7). The internal cross
checks resulting from orthorhombic symmetry
coupled with checks from the four difierent
specimens show excellent agreement in the com-
puted values. .

Because an intercrystal check on the pressure
derivatives of ¢;; was not possible, the reliability
of the measured values was examined by making
two independent pressure runs. Although the
cross-coupling meduli may also be determined

by propagation of quasi-longitudinal modes,

their echoes became very small and nondistinet

at pressures of about 4.5 kb and were not detected
by the automatic peak finder. Because this
phenomenon “was observed for all longitudinal
pressure runs, all longitudinal data above approx-
imately 4.5 kb were taken manually (i.e., without
the automatic peak finder). Because a small but
significant amount of curvature was observed
for all shear moduli and because the manually
taken data were not precise enough to describe
this curvature, consistency for the pressure
derivatives of the cross-coupling coefficients was
again determined by repeating the quasi-shear
pressure runs. A single quasi-longitudinal run
was performed for propagation direction N =
[0mn] and polarization U = [0mn] and was then
used as a consistency check for (dca3/0P)r = cad’
and as an independent check on the accuracy of
¢ss’. An independent check on ¢;3’ results from
considering the expressions given by Fisher and
MeSkimin [1958] to calculate the direction
“cosines for propagation direction N = [Omn]:

. R PVosz = F'ch'z = (Cass -+ c'“s) 5)
N c”s s _ (

where m* 4+ n* = 1. By differentiating (5) with
respect to pressure and solving for ¢/, the fol-
lowing expression is obtained:

F

e’ = {[(pi’;,,’)' + (pV)as’ — eu'ln

—(p Vm'2 =4 PVqs2 V= C«)znl

— (2m'cyy + me)nm + 2m’ncy,} /0’ (6)

Here m’ and »’ denote the first pressure deriva-
tives of the direction cosines, which can be cal-
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TABLE 7. Isothermal First Pressure Derivatives of the Effective Elastic Constants at 25°C

o s Weighted
L Specimen N u [3(pgW2)/3P] (3¢, ,"/2P)q Average
wis 3 [100] [100] 9.86 11.08 * 0.06 R
1 [100] {100] 9.72 10.94 + 0.09 .08 % 006
O53 1 {010] (o10] 9.07 9.27 + 0.07
4 {o10] {010] 8.90 9.11 * 0.07 FeIP & P05
c33 1 [001] [001] 15.69 16.40 * 0.06 .
1 {oo1] [oo1] 15.72 16.44 + 0.06 A2 £ 008
Dk 1 010) {001 2.25 2.35 + 0.01
4 010] foo1 2.36 2.46 + 0.01 .
1 001] [o10 2.08 2.36 ¢ 0.01 2'.38 £0.05
1* {oo1] {o10] 2.12 . 2.40 % 0.02
- : g 100] {oo1 2.58 2.98 + 0.01
: 3 100] foo1 2.45 2.85 + 0.01 2.92 + 0.04
1 001] [100 2.711 2.97 + 0.02
s 1 100] {010 2.36 2.77 £ 0.01
3 100] fo10 2.35 2.77 + 0.01 N
1 010] (100 2.61 2.71 + 0.02 2,75 ¥ 0.00
4 010] (100 2.61 2.71 * 0.02
- 2 [1m0] 10 1.66 6.97 + 0.14
2 (m20] 1.66 6.97 + 0.14 W7 £ 0.20
13 4 [2on] oi] 2.21 9.11 + 0.14
. 4 .19 9.07 + 0.14 909 ¢ 4.0
#iy © 8 [Oomn] (o] 1.64 8.69 + 0.10
; 3+ 1.57 sess0.1s |, »3TOl0

*Run made with Arenberg PSP AFC ultrasonic equipment. All other data were taken with MRL PSP AFC

equipment.

-

culated from the isothermal elastic compliances
[Graham, 1969; Barsch and Frisillo, 1973]. The
computed cross checks ¢’ = 8.72 and ¢y’ =
16.53 are in excellent agreement with their
corresponding values in Table 7. The agree-
ment of the check on ¢, illustrates the self-
consistency of the data, since knowledge of c.,
and c.. and of their first pressure derivatives is
required for the calculation.

To test the possibility of inherent systematic
error in the MRL PSP AFC ultrasonic equip-
ment used to obtain most of these data,
several pressure runs were made with a differ-
ent ultrasonic unit (Arenberg PSP AFS). The
agreement of the data obtained by using the two
ultrasonic units demonstrates that systematic
errors from the electronic system are very small.

The errors shown in Table 7 for (dcuv’/0P),
are based on the standard deviations of the least-
squares curve fit of (plI™),”. Because the major
source of error in (p}?), arizes from (pll™)/,

..

.1 JU—

the standard deviation of the curve fitted to
the raw data can be considered as a reasonable
estimate of the probable error for each run.
The error given for the eross-coupling moduli
was determined from the errors of (p,11*)/, of
the pressure coefficient of the on-diagonal mod-
uli, and of the direction cosines by means of
the Gaussian error propagation law. In several

cases the differences between the value of

(d¢..’/aP), obtained from different modes are
larger than the standard errors of the indi-
vidual runs. Therefore the ‘weighted average’
values (V) were determined by

bl n

V=2 wv./ 2 W (M

where W, = 1/(s.d.)* for the individual runs
and V, are the corresponding values of (dc..%/
dP), to be averaged. The errors for the weighted
average vilues were estimated according to
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4 - [z WV, — (1)
+ o.’}/n Z-: W,]m (8)

=1

where o; is the standard error of each value V,
and n is the number of modes to be averaged.
(This formula has been suggested to the authors
by H. H. Demarest, Jr.} This formula is a
useful extension of the Gaussian error propa-
gation law to which it reduces in the case of
perfect consistency (Vi = (V) for all 2). Its
validity is restricted to the case of good con-
sistency ((V:. — (V))* < o.°). For ‘inconsistent’
data ((V. —(V))* > &) the factor = in the
denominator has to be replaced by the value
(n — 1), and in the limit (V, — (V) <€ o
the revised formula reduces to the regular ex-
pression for the standard errors of the average
(V) obtained from 7= independent single meas-
urements of V. For the data in Tables 7 and 8
the consistency is good, and the use of (8) is
therefore justified. :

Second pressure derivatives of effective sec-
ond-order elastic constants. For calculating the
second pressure derivatives, the isothermal first

TABLE 8.
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pressure derivative of the isothermal single-
crystal bulk modulus is required. This deriva-
tive ix found by using the general relation
[Thurston, 1967]

(aKos/aP)r = (Ko.s)z(sw-'isls ikt Skln:) (9
io determine the isothermal derivative of the
adiabatic bulk modulus (X,°)” = 9.63 and then
converting this value to the purely isothermal
derivative (K,")’ = 942 by using Barsch’s
[1967] equation 5. The quantities B, appear-
ing in (9) are the thermodynamic pressure
derivatives of the single-crystal adiabatic elastic
constants. The equations necessary to convert
the measured effective derivatives to thermo-
dynamic quantities have been given by Thurston
[1965]. By using the equations of Barsch and
Frisillo [1973], the second pressure derivatives
of the effective elastic constants have been com-
puted (Table 8). It should be noted that the
quantities c.”, ¢, and ce” are negative but
that the secorid derivatives ¢,.”, ¢, and c.” of
the cross-coupling moduli are positive, These
positive values result from a change in sign
when the negative values of (p,W*)” are sub-
tracted in determining (pV?)”, used in com-

Isothermal Second Pressure Derivatives of

the Adiabatic Effective Elastic Constants at 25°C

N

[32(00#2){2P%] E
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Average,

s
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[ Cy {l los 0,

Mo

010 001)
010 001]
001 010]
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*Test made with Arenberg PSP AFC ultrasonic equipment.

 equipment.

All other data taken with MRL PSP AFC

+Calculated by a;suming e, c22", and c33" to be zero.
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puting the second pressure derivatives of the
cross-coupling moduli, and from the assump-
tion that the second pressure derivatives of the
on-diagonal longitudinal moduli, which also enter
the calculation, are zero. Although the change
in sign follows from the equations used to com-
pute the quantities (pV®)”, it is important to
note that any nonlinear behavior for the on-
diagonal longitudinal moduli is not precluded by
the present study, since the longitudinal data
were very difficult to obtain at higher pressures
where curvature might be observed. Because
there is no reason to suspect that these coeffi-
cients behave linearly under pressure when the
shear coefficients do not, it is likely that the
second pressure derivatives of the on-diagonal
longitudinal moduli are also nonzero. Conse-
quently, the values and the signs of the second
pressure derivatives of the cross-coupling moduli
depend on the magnitude and the sign of the

on-diagonal longitudinal modes. It is probable,
therefore, that, although the determined values
of (p,77*)” are excellent, the computed values
for c..”, ¢s”, and c” (Table 8) are considerably
in error. As a result, a complete description of
the nonlinear hehavior of the bronzite specimens
cannot be given in this study. One important
conclusion resulting from the present data, how-
ever, is that the elastic properties of possible
earth materials can show curvature even at
pressures as low as 10 kb. However, owing to a
solid-solid phase transition, which should occur
at about 135 kb [Ringwood, 1967; Ahrens and
Gaffney, 1971], the curvature in the bronzite
data should not play a significant role in the
earth’s interior.

The stated errors for each run in Table 8
are the standard deviations resulting from fit-
ting the data to a quadratic function in pres-
sure. The weighted averages and their associated

T

1.00—
N =

/u=

0.98—

- AN
N = COOI]
[ u=toon'c®”

096\ -
N =[0l10] (Cz2)
- U =[010]

pr(T) / Cuy(To)

-

0.94—

0.92

1 1

[1001 -
(1001 (Cy)

N = [001]

(Cag) 2
= oo >

(=
"

X\‘

N\

1
0 100

1 1
200 300 400

Temperature (°C)

Fig. 4. Experimental data of the on-diagonal elastic constants ¢, €=, c=, and css (referred
to their values at 7% .—_.25‘.’C) as a .function of temperature. Solid triangles, solid squares,
open circles, and crosses indicate specimen 1; open triangles, specimen 3; solid circles, speci-
men 4.
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TABLE 9. TIsobaric Temperature Derivatives of the )
On-Diagonal Elastic Constants at 25° to 350°C
" S Weighted
Elastic 5 = (acuv / aT)p=0’ Average,
Constant  Specimen N U kb °c”! kb °c-1
en 1 [100]  [100]  -0.352 % 0.001  _
3 F100]° ' f100]  -0.353 ¥ 0.001 N0 SRR 0000
22 1 [010] [010]  -0.328 % 0.001  _
_ 4 f0i0]° . [o10]  -0.329 + oJopy =i T-9283 0.001
548 1 [001]  [001]  -0.516 + 0.004 -0.516 * 0.004
eyl i [001] [o10] -0.128 £ 0.002 !
4 [010]. ([00E] < <0127 0LA0R Bt
R T foo1]  [100]  -0.138 % 0.002  -0.138 * 0.002
cge | o B -~ [100]  [010]  -0.133 #0.001  _
4757 To10] | [100] <0150 £+0.605  TOUIR SIS

errors were determined by (7) and (8). The
difficulty of accurately specifying the second
pressure derivatives is reflected in the relatively
large scatter in the present data. However,
because this difficulty exists, even for synthetic
‘single-crystal specimens (see, for example,
Chang and Barsch [1971] and Barsch and Shull
[1971]), and because four different naturally
occurring specimens were used, the consistency
of the determined second pressure derivatives
must be considered as excellent.

As was mentioned above, cross checks on the
second pressure derivatives of the cross-coupling
moduli by using the quasi-longitudinal modes
were not possible. Therefore the consistency of
the results was examined by repeating the pres-
sure runs for the quasi-shear modes. The repro-
ducibility and the agreement of these data and
those for c.” and c«” obtained by using two
different sets of ultrasonic electronic equipment
“support the nonlinear elastic behavior of the
shear moduli beyond any doubt.

Temperature dependence of second-order

elastic constants at 1 atm. The temperature

dependence of the quantities pV?, which are
necessary to determine the temperature deriva-
tives of the elastic constants, has been directly

-determined by making the appropriate density

and length corrections. Because the on-diagonal
elastic moduli are given by c.’ = pV? the
temperature derivatives for c,.° are explicitly
determined by fitting a polynomial to the data
for pV* as a function of temperature. The tem-
perature dependence of pV* for the on-diagonal
moduli ¢y, Cu, Cs, and ¢ is plotted in Figure 4.
The values have been normalized by dividing
by ¢..(T,), with T, = 25°C.

The values for the temperature derivatives
of the on-diagonal elastic constants and their
standard deviations as determined by a poly-
nomial fit to these data are presented in Table
9. In all cases the temperature dependence was
found to be linear, within experimental limits,
up to 350°C. The equations necessary to calcu-
late the temperature derivatives of the cross-
coupling coefficients have been given by Graham

‘[1969] and Frisillo [1972].

The experimental data necessary to compute
the temperature dependence of the cross-
coupling coefficients have been given by Graham
ences of the values of pV* for the quasi modes.
These data, again normalized by dividing by
the initial value p,V, are presented in Figure 5.
The computed values for the derivatives of the
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Fig..5. Experimental data of pV* (referred to the value at Ty = 25°C) for the quasi-shear
modes used to determine the cross-coupling modull ¢is, €13, and ¢= as a function of tempera-
ture. Circles indicate specimen 2; squares, specimen 3; triangles, specimen 4.

~

cross-coupling moduli are presented in Table 10.
The stated errors and the weighted averages
and their errors have been determined by using
the error propagation method and (7) and (8),
respectively. :

DiscussioN

Comparison of bronzite data with those of
other authors and for other materials of geo-
physical interest. The single-crystal elastic con-
stants of orthopyroxene at room temperature
and 1 atm have been measured previously by

TABLE 10. Isobaric Temﬁerature Derivatives of the

Ryzhova et al. [1966] and Kumazawa [1969].
The elastic constants of orthopyroxene from
these authors are compared with the results

presented here (Table 11). Because the speci- *

men used by Ryzhova et al. [1966] had a large
porosity (1.8%), their reported values are sig-
nificantly low in some cases. The present data
and those of Kumazawa, however, compare
favorably, the elastic constants in the present
study being somewhat smaller, apparently owing
to the increased iron concentration. Because
values for cg and c¢,., however, are higher than

Cross-Coupling Elastic Constants at 25° to 350°C

Elastic

[3a(pV?)/3T]) - [3euv/aT]p=0,
kb oc1 P70 iy 'c-lp

Constant Specimen N 1]
a2 2 [zm0] [1m0] -0.417 -0.212 + 0.007
‘13 4 [zon] [ton] -0.462 -0.318 * 0.008
3 [omn) [omm] -0.388 -0.107 + 0.007

23
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e vS of Orthopyroxene with Those of Other Investigators at 25°C
H (A11 values in Mb.)

Present Work .
(Mgo, gFep, 25103)

Xumazawa [1969]
(Mgo, suFep_165103)

Ryzhova et al. [1966]
(Not Analyzed)

2.286
1.605
2.104
0.8175
- 0.7548
0.776
0.710
0.548
0.460

2.299
1.654
2.057
0.8306
0.7637
0.7853
.0.701
0.573
0.496

1.876
1.578
22,085
0.700
0.592
0.544
0.586
0.605
0.561

those of Kumazawa, careful consideration was
given to checking the n conditions for these
modes that might cause such disagreement. No
such error was found in the present study.
The isotropic elastic constants of bronzite and
their derivatives with respect to pressure and
temperature as calculated {from the single-crystal
data by means of the Voigt-Reuss-Hill (VRH)
approximation are compared with some experi-
mental data on polyerystalline bronzite contain-
ing 10% enstatite [Chung, 1971] (Table 12).
Also included for comparison in this table are
the isotropic properties of 20% fayalite olivine
obtained by Graham [1970] by linearly extrap-

TABLE 12.

olating his single-crystal data on the pure
end-member MgS8i0O, [Graham and Barsch,
1969] and those of Kumazawa and Anderson
[1969] on (MgossFeoer)-Si0,. In addition, iso-
tropic elastic-property data of garnet of the al-
mandine pyrope variety [Soga, 1967] are pre-
sented. It is apparent that the densities, the
bulk moduli, and the shear moduli of the two
bronzite specimens are rather similar but that
the values of (dK°/6P), differ by almost a
factor of 2. Without further systematic work
on well-characterized polyerystalline specimens,
any attempt to explain this large discrepancy
would be merely speculative. The elastic data

Comparison of Isotropic Moduli and Pressure and Temperature

Derivatives of Bronzite (Mgg.gFep, ,5i0;) with Those of Polycrystalline
Bronzite (Mgg, oFeq 1Si03), Olivine, and Garnet at 25°C

Bronzite,
10% Enstatitet

Parameter

Olivine,

Almandine-Pyrope
20% Fayalite§

Garnett

e g/cm? 3.273
X°, Mb 1.06

K, v

- (@XS5/3P) ¢
(2X5/3P) p
(. H/ar)P, kb/°C.
(35°/3T)p, kb/°C
c, ¥

3e/2p)
(3¢/31)p, kb °C

5.3

3.459
1.256
1.226
5.09
5.16
-0.193
-0.223
0.788
1.74
-0.142

4.160
1.770
1.757
5.43
5.45
-0.201
-0.201
0.943
1.400
-0.106

*From this study.
+From Chung [1971].
§From Graham [1970].
$From Soga [1967].
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of qlivine differ somewhat but not greatly from
the present bronzite data, except in the value of
(0K*/dP)+, for which a difference of a factor of
about 2 occurs. Because the Fe/Mg ratio in both
materials is approximately the same, this differ-
ence is attributed to the different erystal strue-
tures. Although the composition of the garnet
specimen differs considerably from the composi-
tions of the bronzite and olivine samples (it cor-
responds to an almandine to pyrope ratio of
about 3:1), the pressure coefficients of the bulk
modulus and of the shear modulus are closer to
the values for the olivine sample. The contrast
with the bronzite data underlines again the
unusual properties of the enstatite structure.

It is important to note that, from the com-
pression data of Bridgman [194S] on hyper-
sthene, an equally large value for the isothermal
first pressure derivative of the bulk modulus is
obtained. Bridgman’s data are expressed in the
form (Vo — V)/V = aP + bP®, where Voand V
are the specimen volumes at ambient and ele-
vated pressures, respectively, a = 1.08 ML,
b = 52 Mb”® and p, = 342 g/em® for the
hypersthene sample studied. The isothermal bulk
modulus and its isothermal pressure derivative
are obtained from the relations [Anderson,
1966] K* = 1/a = 0.9259 Mb and (8K"/8P)r
= 2b(K")—1 = 7.9. Although Bridgman’s data
are less accurate than the presenf acoustic data,
the large value of (dK"/dP)r obtained from his
measurements is indicative of the anomalous
behavior of orthopyroxene at high pressure.

Incomplete velocity measurements as a fune-
tion of temperature and pressure have also been
performed on natural rock specimens containing
primarily bronzite [Hughes and Nishitake, 1963;
Birch, 1960; Simmons, 1964]. These data have
been combined by Anderson and Sammis [1970]
to give the complete set of data of the velocities
and their derivatives with respect to tempera-
ture and pressure (Table 13). The results cal-
culated from the present single-crystal data by
means of the VRH average are also shown
for comparison. Although, because of porosity,
heterogeneity, and grain size, the accuracy of
data from natural rock ¢pecimens is usually not
very good, the two sets of data shown in Table
13 are in fair agreement.

Nonlinearity of pressure dependence. In Fig-
ure 6 the pressure dependence of the on-diagonal
shear moduli is plotted as caleulated from the

FrisiLLo AND BarscH

TABLE 13. Comparison of Present Bulk
Velocity Data Obtained by Using VRH Averages
with Those Measured in Bronzite Rock Sumples

Anderson

Present and Sammis
Parameter Data [1970]*
o, g/cm? 3.354 3.279
Vp, km/sec 7.78 7.64
Vg, km/sec 4.72 5.59
(3Vp/3P)p, 1073 km/sec kb 20.57 19.00
(3Vp/aT)p, 10™"* km/sec °C -9.08 -6.40
(3Vs/2P)p, 10-3 knm/sec kb 5.16 7.00
(3Vs/3T)p, 10°* kn/sec °C -4.86 -6.00

*Based on data from Hughes and Nishitake
[1963], Birch [1960], and Simmons [1964].

measured elastic'data according to the linear
approximation

¢ = ¢,,° + (3c,,/dP),P (10)

and according to the quadratic approximation

¢ = ¢.° + (3c,,/dP),P
+ (0%, /aP(P?/2)  (11)

It is apparent that, at pressures above about
20-30 kb, considerable deviations from the linear
relation (10) arise as a result of the quadratic
term in (11) and that, for ¢, and ¢z, maximums
occur at about 85 and 50 kb, respectively. With-
out kngwledge of the derivatives higher than
second order or of the convergence of the Taylor
expansion of the elastic constants with respect
to pressure or both, it is, of course, not possible
to establish the exact functional dependence on
pressure in the range considered. Because calcu-
lations for alkali halides based on model poten-
tials show that the exact pressure dependence
falls between the linear dependence and the
quadratic dependence [Barsch and Shull, 19717,
it is not unreasonable to expect qualitatively
similar behavior for bronzite. Thus for two of
the three on-diagonal shear moduli a substan-
tial deviation from nonlincarity would remain,
even if the quadratic terms would be reduced,
for example, to half their values.

The remaining shear moduli are functions of
the on-diagonal longitudinal moduli ¢, €22, and
€13, of the eross-coupling moduli 12, €13, and c.s,
and of the direction cosines of the propagation
direction. Because it was not possible to measure
the second pressure derivatives of the on-diagonal
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Fig. 6. Pressure dependence of on-diagonal
shear constants. Dashed lines indicate linear ex-
trapolation; solid lines, quadratic extrapolation.

longitudinal moduli, the second pressure deriva-
tives of these shear moduli are still unknown.
However, because the nonlinearity found for

the quasi-shear modes (see, for example, the .

curve for N || [(0n] and U || [n0]] in Figure 3)
and the second pressure derivatives of the cross-
coupling moduli determined from the assumption
(d%,,/0P?) = 0 (u = 1, 2, 3, no summation)
(Table 6) are of the same order of magnitude as
those of the on-diagonal shear moduli, it is to be
expected that the second pressure derivatives of
the remaining shear moduli are of the same order
of magnifude. By the same token, the second
pressure derivatives of the isotropic shear modu-
lus, which depend in the VRH approximation on
the second pressure derivatives of all nine elastic
constants, should be expected to be roughly equal
to the average of the second pressure derivatives
of the on-diagonal shear moduli (approximately
—33 Mb-1). In connection with the values of
the isotropic shear modulus (0.75 Mb) and its
first pressure derivative (2.38), it is thus apparent
that, at the highest pressures of the stability
range of orthopyroxene (about 90-135. kb
[Ringwood, 1967; Akimo’o and Syono, 1970;
Akrens and Gafiney, 1971]), small deviations
for a nonlinear pressure dependence may be-
come noticeable and should be included in
accurate geophysical applications.

To compare the magnitude of the second pres-
sure derivatives of the elastic constants with

the corresponding values of other materials, it
is convenient to consider the dimensionless
quantity K7(d%,./aP*). With K* = 0988 Mb
and the data of Table 8, this quantity is seen
to range from —14 to —57 for the three on-
diagonal shear moduli. For the eight alkali
halides for which the second pressure deriva-
tives of the elastic constants have been meas-
ured and which represent both the rocksalt and
the cesium chloride structures, the quantity
K" (é%../dP*) ranges from —1 to —4.5 [Chang
and Barsch, 1967, 1971; Barsch and Shull,
1971]. For spinel a value of —5.5 has been
measured [Chang and Barsch, 1972]. Thus
the values reported here for bronzite ap-
pear to be anomalously large. An explana-
tion of this behavior requires a lattice theoreti-
cal analysis based on the erystal structure of
enstatite, similar to the analysis presented for
spinel by Striefler and Barsch [1972]. Although
such an analysis is not yet available, it appears
plausible to attribute the large curvature to the
phase transition or the disproportionation of en-
statite between about 90 and 135 kb [Akimoto
and Syono, 1970; Ahrens and Gafiney, 1971].
The decrease of the shear moduli at pressures
above the maximums displayed in Figure 6 in-
dicates decreasing mechanical stability paralleled
by decreasing thermodynamic stability and the
occurrence of a phase transformation before the
mechanical stability limit (e.g., if the quadratic
extrapolation is used, ¢ = 0 at P == 220 kb)
is reached.

Compression of bronzite at very high pres-
sures. The ultrasonic equation of state has
been calculated from the present bronzite data
by using the first-order Birch equation (Fig-
ure 7). For illustrative purposes only, the non-
linear elastic data for bronzite have also been
extrapolated by using the second-order Birch
equation of state. These data are also included -
in Figure 7. Although the nonlinear data are
quite uncertain, it is interesting to note that
the deviation from the linearly extrapolated
data is quite small at 150 kh. If geophysical
applications where temperature effects are im-
portant to depths of >200 km are considered,
it is unlikely that this small difference caused
by the curvature will play an important role
in the equation of state. This conclusion is no
longer valid, of course, if the orthopyroxene-
garnet transition dees not occur and the stability
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Fig. 7. Comparison of ultrasonic equation of state for bronzite calculated from Birch's
equations with static-compression data of Bridgman [1948] (circles) and shock-wave data of
Ahrens and Gafirey [1971] (triangles and dashed lines).

range of the orthopyroxene structure extends to
higher pressures, say, to about 200-300 kb, or
if the nonlinearity of the on-diagonal longitudi-
nal constants turns out to be very large.

In addition to the acoustic measurements of
this study, isothermal-compression data on hy-
persthene to 40 kb [Bridgman, 194S] and shock-
compression data on Bamle enstatite [Ahrens
and Gafiney, 1971] have been included in Figure
7 for comparisoin. Although a direct comparison
with the present data is not possible because the
shock data are not isothermal, it is worthy to
note that the three shock points between the
Hugoniot elastic limit, where enstatite should
behave plastically, and approximately 150 kb
are in reasonable agreement with the present
data. Further examination of the shock data in
the 150-kb regions shows a discontinuity indica-
tive of a possible phase transition. By construe-
ting an enstatite isentrope with Kumazawa's

e ————

[1969] value of the adiabatic bulk modulus and
an assumed low pressure derivative of 5.0,
Ahrens and Gaffney [1971] argued that the final
Hugoniot states above a level of approximately
135 kb lie at a greater density than that indi-
cated for the enstatite isentrope. By converting
their values used for calculating the enstatite
isentrope to isothermal quantities, the extrapo-
lated curve also shown in Figure 7 was obtained.
However, when the present data are compared
with the shock-compression values, the discon-
tinuity is more convincingly illustrated, and
thus the interpretation of a phase transition in
the vicinity of 135 kb is supported.

Pressure dependence of lattice parameters.
Thurston [1967] has proposed an equation of
state that permits the calculation of the lattice
parameters a, (7 = 1, 2, 3) as a function of
pressure from the prineipal stretches X, accord-
ing to
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aK" 3
B = e
i1 3
The index 0 refers to zero pressure. The parame-
ters m, and n; depend on the isothermal elastic
compliances and the isothermal pressure deriva-
tives of the isothermal effective elastic con-
stants according to (I, §8), (I, 90), (II, 9), and
(I, 15) of Thurston [1967]. Their numerieal
values as calculated from the experimental data
of Tables 6 and 7 are listed in Table 14. Also
included in this table are the zero pressure
lattice parameters g, as determined from X-ray
measurements in this laboratory [Frisillo and
Buljan, 1972] (these values agree quite closely
with those reported by Wyckoff [1968] for
Mg, «sFe0 5105, namely, a, = 18310 A, b, =
8927 A, and ¢, = 5.226 A) and the linear com-
pressibilities @, = (dlna,/dP)r and their pres-
sure coefficients 8, = (da(/dP)r as calculated
from the data of Tables 6 and 7 on the basis of
(I, 88) and (I, 90) of Thurston [1967]. In Figure
8 the principal stretches and the lattice parame-
ters as calculated from (12) are plotted as a
function of pressure. No directly measured data
are available for comparison.
Although Thurston’s equation of state (12) is
a generalization of Murnaghan’s: equation of
state and is therefore based on the linear ap-
proximation for the elastic constant versus
pressure relation, its range of validity may be
more limited because it is based on equation
(I, 10) of Thurston [1967] as an additional
assumption. Although Thurston’s equation has
been verified for several materials up to pres-
sures of about 30% of the bulk modulus [ Thurs-
ton, 1967] and for ALO; up to pressures of 10%
of the bulk modulus [Gieske and Barsch, 1968],
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diserepancies have been reported for Mg.SiO,
(forsterite) [Olinger und Duba, 1971]. Apart
from such experimental errors in the high-pres-
sure X-ray data of Olinger and Duba [1971] as
may result from nonhydrostatic stresses in their
opposed anvil system, the possibility cannot be
ruled out that the discrepancies arise from the

‘fact that equation (II, 10) of Thurston [1967]

does not hold for forsterite. For this reason the
pressure dependence of the lattice parameters
(Figure &) should be considered as a plausible
prediction only, until Thurston’s equation (12)
is tested for a larger variety of materials. Addi-
tional errors may arise from neglecting the
quadratic terms in the pressure dependence of
the elastic constants and from using the iso-
thermal pressure derivatives of the adiabatic
elastic constants (Table 7) instead of the un-
known isothermal pressure derivatives of the
isothermal elastic constants. Both errors, how- -
ever, may be expected to be small.

With these reservations about the dependa-
bility of Thurston's equation (12) in mind, one
can conclude from Figure § that the compres-
sion behavior of the three orthorhombic axes is
noticeably different. Especially noteworthy is
the rapid decrease of the slope of the curve for
the ¢ axis, which indicates a rapid decrease of
the linear compressibility in this direction. At
200 kb, for example, the linear compressibility
of the ¢ axis is 3 and 6 times smaller than the
linear compressibilities of the a and b axes, re-,
spectively. Undoubtedly, this behavior arises
from the special features of the erystal structure
of enstatite. Thiz structure econsists of SiO,
chains extending along the c direction and inter-
connected by the (Mg, Fe) cations [Wyckoff,
1968]. Thus, although the initial linear com-
pressibilities along the different erystallographic

TABLE 14. Zero Pressure Lattice Parameters a-o,
Linear Compressibilities a., Pressure Coefficients B.,
-and Exponents m, and n; of "'Thurston's Equation of State

-0.2344
-0.4375
-0.3303

-0.02000
-0.03783
-0.04771

-0.04448
-0.07828
0.1227¢€
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Fig. 8. Principal stretches A: and lattice parameters a: of bronzite versus pressure from
ultrasonic elastic data according to Thurston’s equation of state. Here ao = 18262 A, b, =

8870 A, and co = 5203 A.

axes differ by only 30%, at higher compressions .

the linear compressibility of the ¢ axis appears
to be reduced by the greater stiffness of the
SiO, chains against further compression.
Debye temperature and Grueneisen parame-
ter. The isotropic elastic constant data (Table
12) can be used to calculate the elastic Debye
temperature 6 according to [Anderson, 1963]

0 = h/k[(3p/4m)(Np/ )], (13)
where 2 and £ are Planck’s constant and Boltz-
mann’s constant, respectively, p is the number
of ions per primitive unit cell (5 for enstatite),
N is Avogadro’s number, and M is the molecular

weight. The mean sound velocity v,, is given by
[Anderson, 1965]

ta = [(v,”° + 2057%)/3]""* (14)

and v, and vs are the longitudinal and shear
velocities, respectively (Table 13). The low- and
high-temperature limits y, and y. of the elastic
Grueneisen parameter can be calculated ap-
proximately from [Anderson et al., 1968]

Y = (A% + 2v5)/(8° + 2)  (150)

Vo = ('YP + 2y5)/3 (15b)
where A = vy/v, and y, and vy are the average

Grueneisen parameters of the longitudinal and
shear modes, respectively [Anderson et dl,,
1968]:

v =3+ (KT/vp)(va/aP)T (16a)

Ys = % -+ (Kr/vs)(a”s/ap)r (165)

where (dvy/dp)r and (dvs/dp)r are the pressure
gradients of the velocities listed in Table 13.

The quantities calculated according to (13),
(15), and (16) are § = 724°K, y, = 3.09, ys =
148, y, = 1.65, and v, = 2.02. Because no ex-
perimental specific heat data of bronzite are
available, the elastic Debye temperature cannot
be compared with its thermal value.

The room temperature value of the thermal
Grueneisen parameter '

"y = BKz/pcy (17)

is 1.56, calculated from the experimental value
of the volume thermal expansion coefficient 8 =
470 10 °K™* [Frisillo and Buljan, 1972] and
from a value of ¢y = 94.50 joule mole™ °K7,
which was calculated from the elastic Debye
temperature on the basis of the Debye function
[Beattie, 1926]. As has been observed for nu-
merous other (but not all) solids, the elastic and
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thermal Grueneisen parameters y, and vy agree
surprisingly well. This agreement shows that
bronzite belongs to that large class of materials
for which the average over all vibrational modes
of the erystal required for the ealeulation of the
‘Grueneisen parameter in the quasi-harmonic
approximation [Barron, 1955] can be sueccess-
fully approximated by the directional average
of the elastic modes, the dispersion and the
contributions from the optical branches thereby
being neglected.

Because y, is only 18% smaller than y., it
appears that the temperature variation of the
Grueneisen parameter is small. A small temper-
ature dependence of y has been observed for
many (but not all) oxide compounds [Ander-
son et al., 1968]. e v

. Suanmary AND CoNCLUSIONS

The dependence of the nine single-crystal
elastic constants of bronzite on pressure and
temperature was measured and showed several
unusual features. The first pressure derivative
and the temperature derivative of the longitudi-
nal modulus in the erystallographic ¢ axis and
the first pressure derivative of the bulk modu-

lus are anomalously large. These results are
consistent with earlier polyerystal data and
compression measurements of Bridgman. The
linear compressibility of the ¢ axis decreases
much more rapidly with increasing pressure
than the linear compressibilities of the other
two axes. All these phenomena seem to arise
from the more rapid stiffening upon compres-
sion of the SiO, chains parallel to the ¢ axis and
constituting the crystal structure of enstatite.
In addition, the pressure dependence of the
shear velocities along the three crystallographic
axes, of the velocities of the quasi-shear modes
along directions forming angles of approximately
45° with these directions, and of the associated
shear moduli were found to be noticeably non-
linear below 10 kb. This phenomenon is attrib-
-uted to the decreasing stability of the enstatite
structure with increasing pressure, which re-

sults in a phase transformation or in dispropor- -

tionation into spinel and stishovite. On the other
hand, other properties, such as the magnitude
and the temperature dependence of the thermal
Grueneisen parameter and its agreement with
the elastic Grueneisen parameter, are entirely
normal, £
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AppexpiX: Least-8quares Fir oF pJi® 1o 4
PoLy~NoMIAL oF DEGREE A IN PRESSURE

The pressure dérivatives of the effective elastic
constants were determined from the expansion

coefficients A.¥ of the quantity p,J¥* as defined
by

* N
P2 = py Z‘)) AP /) (AD)

The degree N of the polynomial to which a
given set of data points for a particular mode
was fitted was determined on,the basis of three
criteria.

First, the total sum of the least-squares devia-
tion [vv] for a fit of p,J¥* to a polynomial of
degree N must be significantly smaller (say, at
least 3 times) than that of a polynomial of de-
gree N — 1 and not significantly larger (say,
at most 3 times) than that of a polynomial of
degree N + 1.

Second, the coefficients ¢, = A.¥/AA,”, where
AA.Y denotes the standard error of the nth-
order expansion coefficient for a fit to a poly-
nomial of degree N, must obey the standard
Student t test [Draper and Smith, 1966] for a
probability of 0.95. Because all runs consist of
16-18 data points of p,J¥* (with the exception
of one run consisting of only 11 data points),
the degrees of freedom for N = 1, 2, and 3 range
from 13 to 17, and the coefficient ¢ for a
probability of 0.95, according to the tables for
the standard ¢ test [Draper and Smith, 1966],
must be larger than about 2.1-2.2.

Third, the coefficients 4," and especially the
highest-order coefficients 4, obtained from in-
dependent measurements and representing dif-
ferent modes belonging to the same elastic
modulus must be consistent within their joint
standard error.

The application of these criteria is illustrated
for the shear and quasi-shear modes. As can be
seen from Table Al, the total sum of the least-
squares deviation [vv] is, for the fit to a quad-
ratic relation (N = 2), 2.6-46 times smaller
than that for the fit to a linear relation (N =

1), whereas, for the fit to a third-order poly-

nomial (N = 3) [v2] is reduced by only a
small amount ranging from 1 to 70%. Thus the
first eriterion, with the exception of one mode,
is satisfied for a fit to a quadratic relation:

In Table A2 the quantities t.* (for the co-
efficient of P* for the fit to a quadratic relation
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TABLE Al. Sum of Least-Squares Deviation [vv] for Least-Squares Fit of W2 to
a Polynomial in Pressure of Degree ¥ for Shear and Quasi-Shear Modes

o s =1, n=2, N=3,

Coefficient N 1] Sample 1079 cm?/sec? 1079 cm?/sec? 1079 cm?/sec?
Cuy " [o10] [oo1) 1 25.5 1.15 0.94
010] [oo01] 4 33.4 1.96 1.92
001] [o10] 1* 20.1 1.02 0.32
001] [010] 1 18.7 1.00 0.49
“ess 100) [o01] 1 12,1 1.22 1.02
100] [oo1] 3 88.2 1.92 0.88
001] [100] 1 116.6 4.43 2.31
ce6 100] [o10] 1 9.23 0.93 0.66
100] [010] 3 6.93 1.98 1.05
010] [100] 1 13.1 5.02 4.19
010] [100] 4 8.52 1.31 1.07

c12 [Zm0] [m10] 2 18.0 0.89 0.83 e
[Zm0] [mi0] 2 17.7 0.73 0.62
c13 [Zon] [n07] 4 43.1 5.62 4.43
[z0n] [n07] 4* 48.5 7.67 7.61
c23 [om) [Onm] 3+ 29.7 3.26 ’ 3.01
[omn] [0nm] 3 27.2 7.00 5.91

*Run made with Arenberg PSP AFC equipment. All other data were taken with MRL PSP AFC equipment.

and for the coefficients of P* and P for the fit
to a third-order polynomial) required for the
Student ¢ test are listed for all shear and quasi-
shear modes. It is apparent that, for the fit to
the quadratic relation, all quantities ¢, meet
the Student ¢ test for 959 prohability (¢.° >
2.1). For the fit to a third-order polynomial,
the Student ¢ test for 95% probability is not
fulfilled for either one or both of the quantities
t? and t for most modes, with the exception
of modes 4, 6, and 7, for which ¢’ > 2.1 and
t; > 2.1. According to Table Al, for these
three modes the reduction of [vv] in changing
from a fit to a quadratic relation in pressure to
a cubic one is relatively large and amounts to
about 509.. Because the limit of about 70%
reduction assumed’ in the first criterion is sub-
jective and could as well be taken as 509, these
three modes represent borderline ecases, and, by
relaxing the standards of the first eriterion
slightly, their fit to a third-order polynomial
could be justified statistically. On the other
hand, the corresponding ¢ values of the coeffi-
cients of P* (i.e, n = 2) are for N = 2 over
twice as large as those for N = 3, and the
coefficients are therefore more precise for ¥V =2
than for N = 3. Thus one has the choice of
fitting these modes to a second-order poly-

nomial with standard errors of the coefficients
of P* ranging from 4 to 7% or of fitting them to
a third-order polynomial with standard errors
of the coefficients of P* and P* amounting to
about 12 and 279%, respectively. A decision
between these two possibilities cannot be made
on the basis of the first two criteria. As will
be shown below, the third criterion is also ful-
filled for fitting these modes to a third-order
polynomial. Because all other shear and quasi-
shear modes were fitted to second-order poly-
nomials, it was decided to fit modes 4, 6, and 7
for the sake of uniformity to second-order poly-
nomials also. It should be pointed out, however,
that this assumption is an ad hoe one and intro-
duces a truncation error of unknown magnitude.
As will be shown below, this truncation error
may, for the coefficients of P* for the pure shear
modes, be as larze as 509 but is likely to be
smaller than this value.

For the discussion of the third criterion, the
expansion coefficients A, as defined by (A1)
and their standard errors for N = 2 and n = 2,
N=3andn =2 and N =3 and n = 3 for
all shear and quasi-shear modes are listed in
Table A3. Also listed are the average values
(4. of all modes belonging to the sume elastic
modulus ard their standard errors A calculated
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TABLE A2. Quantities tn” = AnN/AAnN for Student's ¢ Test for -

Coefficients of Least-Squares Fit of pgk? to a Polynomial in Pressure

of Degree N according to pgh? = An”P" for ¥ = 2 and N =3

Mode
Coefficient No.

cuy [010]  [001] 16.59

; [o1o]  [o001] 14'.45
[oo1]  [o10] 10.96

foo1]  [oi0] - . 15.10

NN

. .

.
- 00 W

. [100]  [001] 38.37
(100]  [o01] 24.15
[oo1] [100] 19.67

NN »n
(<A

L
owwLoN
NHA~Awun

[100] [010] 11.60
[100] [010] 5.70
[010] [100] 4.59
[010] [100] 8.45

.
SN

[m0]  [mi0] 10.26
[Zm0] [mZ0] 5.88

NN OoONH-=O oo WO 0 NANS

NN

[Zon] [n07] 8.95
[Zon] [n07] 7.99

- o
N

-
v (o =4
(o =} O

[d;n] [07m) 15.84
[0mn] [07m] 10.64

*Run made with Arenberg PSP AFC ultrasonic equipment. All other data
were taken with MRL PSP AFC equipment.

from A = {[vv]/p(p — 1)} where [vv] is N = 3 the coefficients of P* and P° are still
the sum of the squares of the p individual modes consistent for the modes belonging to the moduli
from the average value (4,%). These quantities i, €, €1, and ¢y, but for the moduli ces and cx
characterize the consistency of the variousmodes the coefficients are not consistent. In spite of
for the same modulus. the consistency found for N = 3 for the moduli
The third ecriterion can be quantitatively ., s, i, and ¢, only a fit corresponding to
stated as the condition’ that, for internal con~ N = 2 will be used in these cases, since the
sisiency, the standard errors A must be smaller  data have been shown not to meet at least one
than or of approximately the same magnitude of the first and second eriteria.
as the standard errors of the individual modes It is also apparent from the data in Table A3
obiained from the least-squares data fit. that in changing from N = 2 to N = 3 the
From the data in Table A3 it is evident that magnitude of the coefficient of P* (ic., 4.%) is
for N = 2 the consistency for all shear and  increased by about 50%. The values of ‘4 for
Quasi-shear modes is good to very good. For N = 4 (not included in Table A3) lie between




TABLE A3, Expansion Coefficients AnN with Standard Errors
of W2 according to (Al) for Shear and Quasi-Shear Modes

Mode - N=2andn-=2, N=3andn = 2, N=3andn-= 3,3
Coefficient No. N U sample 1078cm2 sec™® kb™2  1078cm? sec™2 kb™? 10 8cm? sec™2 kb~
B4l 1 [010] [001] 1 -447 * 27 -685 + 148 16 + 10

2 [0o10] [001] 4 -501 # 35 -605 * 205 7 + 13

3 [001] [010] 1® -392 * 36 -486 * 100 10 + 8

4 [001] [010] 1 -361 * 24 -711 * 100 22 % 6

Average -425 + 31 -622' ¢ 51 14 £ 3

ess 5 [100] [001] 1 -917 + 24 -1127 + 132 13+ 8
6 [100] [001] 3 -806 * 33 -1306 * 134 32+ 8

7 [001] [100] 1 -881 * 45 -1584 + 192 46 * 12

Average ~-868 * 33 -1339 +* 96 31 £ 10

Ces 8 [100] [010] 1 -253 + 22 30 + 119 219+ 8
9 [100] [010]  3* . =200 * 35 298 + 155 -32 % 10

10 [010] [100] b -257 * 56 -723 * 309 30 + 20

11 [010] [100] 4 =237 % 28 10 £ 151 -16 * 10

Average =237 + 13 -385 % 459 -9 £ 50

ez 2™ [Zm0]  [ml0) 2% -459 # 45 -714 * 256 17 £ 17
13 [zm0] [ml0] 2 -448 + 76 -1037 -+ 419 40 + 21

Average -454 * 35 -876 * 115 29.+ 8

e13 14 [ton])  [n0Z)  4* -632 + 71 1+ 374 -44 % 25
15 [Zon] [n0Z] 4+ -659' + 83 -806 * 491 10 * 33

Average -646 * 10 -403 * 285 =17 £ 19

c23 16 [om]  [omW] 3% -375 + 24 -498 + 139 g8+ 9
17 [omn]  [onm] 3 -349 + 33 395 + 201 2+ 3

Average -362 + 9 -52 * 315 5 & 2

*Run made with Arenberg PSP AFC ultrasonic equipment.

equipment.

All other data were taken with MRL PSP AFC
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those for N = 2 and N = 3, and it is there-
fore reasonable to expect that an inercase of
50% represenis an upper bound for the trunca-
tion error. To eliminate or reduce the truncation
error for A.", all measurements would have to be
extended to substantially higher pressures and
the data fitted to a polynomial of degree N
greater than 3 or 4, such that this fit would
still be statistically significant and A.Y would
become independent of N within its standard
deviation. This task remains for the future.
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