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The nine single-crystru el::tstic constants of orthopyroxene, i\Igo.J'Ell."siO:, have been meas­
ured as a function of tempe~ature from 25° to 350°C und at 25°C as a function of pressure to 
10 kb by me:lDS of the ultra~onic pulse superposition techni<1ue. It was found that the shear 
constants exhibited a distinctly nonlinear pressure dependence in addition to the usu!ll linear 
terms. Owing to the diffieulty in obtaining precise data for the longitudinal modes above 
approxim:ltely 1.5 kb, where cun"ature might be observed, only a linear pressu,E) dependence 
was found for the on-diagonal longitudinal constants. Because the second preosure derivatives 
of the on-diagonal longitudinal constants (Cll, cO'!, and c~) enter the expressions required for 
the evaluation of the second pressure derivati,"cs of the off-diagonal consrants (c'-'" C::l, and cu), 
tbe second deri\'ati\'es of the off-diagonal constants are probably consiJerably in error. The 
second pressure derivati\'es of the on-diagonal shear constants and of the unproces5ed data 
for the cross-coupling moduli, however, have been precisely and con5istcntly measured and 
represent the first observations of curvature for nonGubic oxide materials. The dimensionle~s 
quantities K(ilc .. /iJP') (where K denotes the bulk modulus, C~> deno te::; the elastic constant!!, 
and P denotes the pressure) for the on-diagonal shear moduli a re about te.n times larger 
than the corresponding quantities for th~ eight alkali halides for which the'Se quantities 
are known. The isotropic bulk and "hear moduli and their pressure and temperature de­
rivatives calculated from the si nlo!lc-crysl:t1 data by means of the Yoigt-Rel.l;s-Hill (VRH) 
approximation are K' = 1.035 Mb, G = 0.749 11b, (DKs/DP)r ::= 9.59, .(DGliJPh .= 2.38, 
(aKs/an. = -0263 'kb oC-', nnd (DGID7' ), = -OJl!) kboC-1

• Owing to the large values of 
the pressure derivatives of the longitudinal elastic constants Cu, c"', and espeCially C"", the 
pressure derivati\'e of the bulk modulus of orthop}Toxene is approximately twice as large as 
that for most other materials norm:llly considered to be of importance in the earth's mantIc. 
Th~ ultrasonic equation of sta.te calculated from the first-order Birch equation agrees well 
with static-compression data and, below about 150 kb, with shock-wa\'e data. The clastic 
Grueneisen parameter calculated from the VRH approximation is found to be 30% larger 
than the thermal Gn.:eneisen parameter. 

The single-crystal elastic constants of many 
geophysically relevant materials have been ul­
tr:!sonically measured by several authors as a 
function of temperature and pressure (!!ee, for 
ex:!mple, the compilations by Hearmo-n [1969] 
and Bechmann [1969] and, in addition, those 
by Graham and Barsch [1969] and Kumazall'a 
and Anderson [1969]). A yaibble single-crystal 
elastic d!lta on pyroxenes, howeyer, ha\'e been 
limited by the paurity of suitable spel'imell~ of 
sufficient size and quality on which to perform 
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ultrasonic measurements. Single-crystal data 
haye been repo'rted for six clinopyroxenes 
[Ale:l:audrov and R?Jzhova, 1961; Alexandrov 
et al., 1963] and two orthopyroxenes of the 
bronzite ,"ariety [R!lzho~'a et aZ., 1966; KUl1la­
zalra, 1969]. In nOlle of these studies, howeyer, 
were thc effect:; of ele\"ated temper:lture and 
pre.:;sure included. For orthopyroxene the tem­
perature and pressure dependence of com pres­
sio n:1!- :1l1d shear-\\'a"e wloeities has been mC:ls­
urcd [Birch, 19GO; S;mmol1s, 1964; Hughes alld 
,Yishilake, 1963]. These measurements, howc\'er, 
h;wc oem made 011 ll!l tur;l ! rock specimens in 
which the problem:; of porosity, crack.;;, hctero­
geneity, :lnd large grain s ize reduce the pre-
ri~ ioll of the ll1rasurements, p:Ht icub rly those 
of the temperatu re ;lIld pre,,-ure deri\·atin·s. In 
addition, ("Qm;lrl',,:;"w'n;l !- and ",hear-w;\\'c \'e1ority 
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TABLE 1. Quantitative Analysis of Bronzite Specimens by Atomic Absorption 
(All values in wt %.) 

Maximum 
Element Sample 1 Sample 2 Sample 3 Sample 4 Difference 

MgO 30.10 28.80 30.30 30.80 2.0 
Si02 54.80 53.80 54.00 54.00 1.0 
Fe203* 13.60 13.90 14.90 14.40 1.3 
A1 203 0.60 0.68 1.00 0.79 0.4 
CaO 0.18 0.29 0.50 0.50 0.04 
MnO 0.24 0.28 0.25 0.24 0.04 
Na20 0.00 0.00 0.43 0.09 0.43 
Baa 0.00 0.00 0.04 0.04 . 0.04 
~iO 0.06 .0.00 0.00 0.00 0.06 

Total 99.58 97.75 101.42 100.86 

Detected spectrographically in trace amounts for all samples: Cr, V, Zn, Zr, 
Co, Cu, Ti. 

*All iron expressed as ferrous iron'. ' 

data as well as temperature and presi3ure de­
pendence were obtained from different speci­
mens with varyiug compositions by sevcal in­
vestigators. Therefore, for a more complete 
understanding of materials thought to be of 
importance in the earth's mantle, it is necessary 
to obtain elasticity data for members of the 
pyroxene family as a function of temperature 
and pressure. The purpose of this paper is to 
pre;:ent precise data for the single-crystal elastic 
constants of natural orthopyroxene and their 
temperature and pre:osure derivatives. 

EXPERIME:\TAL PROCEDURE 

Four natural single-crystal orthopyroxene 
samples from India (purchased from the Com­
mercial Mineral Company, New York) were 

. used in this investigation. A quantitative anal­
ysis using atomic absorption was performed by 
R. E. Raver of the Pennsylvania State Univer­
sity :\fineral. Constitution Laboratory ' (Table 
1). The mean molecular formula as determined 
from these data is appro:-..imately l\!go .• Feo.,SiO,. 
The specimens are therefore of the bronzite 
variety . . 
. Orthopyroxene belongs to the orthorhombic 

space group Pbca [Wyckoff, 1968]. Therefore 
nine second-order elast ic COl1stnnts are necessary 
to describe the elastic behavior of the crystal. 
In the \'oigt notation they are ell, e"" e"", eu , er.:;, 
cO', C", e,." and e",. All the on-di:lgonal moduli . 
e.~ (no summation conyention) cnn be deter-

mined' from ultrasonic \'elocity measurements in 
pure-mode direct.ions parallel to the crystallo­
graphic a, b, and e axes, which aLo provide 
cross checks on e .. , e .. , and Coo. The three cross­
coupling moduli' (CIO, e'3, and c",,) can be deter­
mined from three different propagation direc­
tions perpendicular t6 one of the orthogonal 
crYHallographic axes and ohlique to the remain­
ing two. Therefore three different orientations 
are necessary to determine the cross-coupling 
moduli in addition to the pure-mode orienta­
tions. The equations used for the calculation of 
the elastic constants and their first and second 
pre;:"ure derivatives for these orientations can 
be determined from the Chri:;:toffel equations 
and have been gi\'en by Fisher alld ,11 cSkimin 
[1958], Graham [1969], nnd Barsch and Frisillo 
[H)'3]. Because no single specimen \\'as large 
enough to determine all nine of the clastic con­
!!tams and because the specimens ha\'e approxi­
mately the same chemical composit ioll, it was 
decided to use all four specimens. 
. Fi~ure 1 illustrates the orientation of the four 

samrles. Speeimcn 1 W:lS used for determining 
the Oil-diagonal moduli, and specimens 2, 3, and 
-1 were used for cetermining the eroos-coupl ing 
moduli. In :1ddit ion, propnr;3tion directions 
parallel to the x axis for specimens 2, 3, and -1 
(Figure 1) were nl:;o used to measure the re­
"pecli\'e on-diagonal moduli, which conld ' then 
be compared with (bta from ~I)ecimen 1. In 
this way the rcsults from the four different 
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samples could be examined for consistency. 
Sample 2,- which would have been used to de­
termine the on-diagonal moduli corresponding 
to the [001] propagation direction, cleaved 
while it was being ground, As a result, further 
attempts at grinding the (001) face were not 
made. Specimens 3 and 4, however, were suc­
cessfully prepared, and checks could be made 
on the elastic constants obtained from propaga­
tion directions parallel to [100J and (010). 

All - ~mpk faces wcre oriented by using the 
Laue back-reflection technique and are accur:lte 
to better than 10. The faces of t he samples 
were ground flat by using #320 silicon carbide 
powder and were polished with I-fL diamond 
paste. The sample faces weTe found to be paral­
lel to within 0.0001 em/ em and fht to within 
0.0001 cm. S~mple thickness was measured by 
using a Starrett 221 micrometer with It stated 
accuracy of ±O,00003 cm. The densities of the 
specimens were detprminecl b~· using the u;;ual 
liquid immersion method (Table 2). A mean 
demity of 3.354 ± 0.002 g/cm' w:ts acloptcd 
fOT all calculations. 

The adiabatic clastic coniltan!:; and their tl'm-

perature alld pre;;surc dependence were deter­
mined b.\· measuril;,~ the transit timE'::; of 20-
l\IHz ultra"onic \\":1\·es between p:uallel £:\ces 
by u~il1g th(' pube superpo~ition technique of 
MeSkill/in [19(H). T\\·o different ultra:;onic pulse 
superpo~ition lmit ;; , which h:1\'e been de;;ignateci 
MRL ~SP :\FC and Arenberg PSP AFC, were 
us cd in the present study. Unless it is otherwi:le 
specified, the l\ITIL unit has been used to obtain 
the acoustic data prcsented In this study. A 
complete description of these uni ts, including 
the automatic peak finder, which electronically 
'detects the correct echo' maxilmim. has been 
given in detail by other authors [Gieske, 1968; 
Miller, 1969]. The preS5ure apparatus has been 
described previously by Bogardu.s [1964]. 

For determining the zero pressure elastic con­
stants and during the pressure tests, the tem­
perature of the specimens was maintained at 
25.0 ± 1.0°C by circulating water through a 
copper tubing jacket wrapped around the out­
side of the prcssure w:lsel with a Laud~ con­
stant temperature circulator (model NBS-HT). 
The temperature and the temperature gradient 
of the specimens were monitored by two chromel­
alumel thermocouplC5 . placed in pro).imity to 
two different faces of the specimen. The ther­
mal emf's were measured before and after each 
measurement Oil n. Leeds and Northrup K-3 
potentiometer by using an ' ice bath reference, 
and a negligible temperature gradient was indi­
cated within the specimens. 

Pressure in the ye5~el was provided by com­
pressing argon gas wit h a Harwood two-stage 
gas compressor system. The pressure in the test 
vessel was measured by a manganin cell in con­
junction with a Carey-Foster bridge (model C, 
Harwood Engineering Company) calibrated 
prior to each pressure run. 

The temperature dependence of the elastic 
constants was determined by using an intern:tl 
furnace made of a cylindrically wound coil of 

TABLE 2. Densitites of Bron.ite Specimens at 2S·C 

Specimen Density. g/cm3 

1 3.354 0.001 
2 3.3S5 0.001 
3 3.3SS 0.001 
4 3. 3S1 0.001 

Average 3 .3S4 0.002 
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Kamllal wire that fits within the 2-inch diam­
eter of the bore of the pressure ,·c;;~eJ. By using 
the thermocouple arrangl'ment de~cribed for the 
pr~;;ure t~ts, a maximum Yariat ion of :::!: 1.5c C 
was maintained during all temperature meas­
urements. To minimize the effects of oxidation 
of the bore and the sample-holding deyice, the 
system was purged with argon gas prior to each 
temperature run. Nat.ural quartz ac- and cross­
cut transducers having diametf:rs of 0.250 inch 
and resonance frequencies of 20 ::'11Hz ± 1 % 
(purchased from the Valpey Corporation, Hol­
liston, ~lassachusetts) were used to generate 
and r~ei\'e the transverse and longitudinal ul tra­
sonic wave pulses, respectively. Two types of 
bonding materials were used to cement the 
transducers to the sample faces. At room tem­
perature, for measuring the elastic constants 
and their pressure dependence, non-aq stopcock 
grease (Fisher Scientific Company) was used. 
For high-temperature measurements Extemp 
9901 (Lubrication Engineering Company) was 
found to be satisfactory to appro:-..i.mately 350°C, 
at which point it became dry and was no longer 
functional. 

ExPERIMENTAL RESl."LTS 

Ela3tic constants at 25°C and 1 atm. By using 
the orientations shown in Figure 1 and the 

equations of Fisher and McSkimin [1958), the 
adiabat.ic elastic constants cp • s were determined 
(Table 3). The corresponding sample numbers, 
propagation directions N, and polarization direc­
tions U used to obtain the cp • s are also included 
in this table. ""hen it is considered that four 
different natural specimens were used, the con­
sistency of the data is quite remarkable. 

Because calculation of the cross-coupling 
moduli depends on the direction cosines of the 
propagation directions, it is necessary to deter­
mine these quantities accurately. They were 
determined by the method proposed by Fisher 
and McSkimin [1958]. Because each cross­
coupling modulus may be determined by either 
a 'quasi-shear' or a 'quasi-longitudinal' elastic­
wave velocity, the propagation angles and the 
associated elastic constants can be calculated 
simultaneously. The calculated angles and the 
pure transyerse mode cross check afforded by 
the pure transverse mode relations are listed in 
Tables 4 al!.d 5.' Despite small compositional 
variations, the method of Fisher and McSkimin 
leads to a maximum difference of oniy 0.6% in 
the calculated and measured values of pV' 

. (Table 4). This check justifies the application 
of this method, even though four different speci­
mens were used. 

TABLE 3. Velocities of Pure Modes and Calculated Values of the 
Adiabatic On-Diagonal Elastic Constants at 2S'C 

S S 
Elastic + U 

Thickness d. Velocity, C~ ~ Average cIIU ~ 
Constant Sample N IIID a/sec Mb 

all 3 [100] [100] 6.696 8.255 2.286 2.286 t 0.001 
1 [100] [100] 6.794 8.253 . 2. 285 

c22 4 . [010] [010] 7.176 6.915 1.604 1.605 t 0.001 
1 [010] [010] 7.664 6.920 1.606 

au 1 . [001] [001] 6.783 7.920 2.104 2.104 t 0.001* 

c .... 1 [010] [001] 7.664 ".934 0.8167 
4 [010] [001] 7.176 4.940 0.8184 0.8175 t 0.0009 
1 [001] [010] 7.683 4.936 0.8174 

ass 1 POD] [001] 6.794 4.745 0.7553 
3 [HID] [001] 6.696 4.744 0.7551 0.7548 t 0.0007 

, 1 [001] [100] 7.683 4.74i 0.7541 

a66 1 [100] [010] 6.794 4.814 0.7772 
3 [100] [010] 6.696 4.809 0.7759 0.7766 t 0.0005 
1 [010] [100] 7. 664 4.810 0.7763 
4 [010] [lOOJ 7.196 4.813 0.7768 

*Error assumed to be equal to that of Cll and 'C22' 

: 
I 

I 

i' 
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TABLE 4. Calculated Propagation Directions for 
Cross-Coupling Constants and Associated Pure-Hode Checks 

Associated Calculated Heasured 
Elastic ... Direction Pure-Mode . py2, py2, 

Constant Sample N Cosine Angle Relation Mb Mb 

013 .. [lDn] l z 0.8332 33°34' l2c6o + n2c .... 0.7910 0.7960 
n = 0.5529 56°26' = poYS/ 

012 2 [lmO) l = 0.7437 41°57' l2css + m2c .... 0.7828 0.7874 
m = 0.6685 48°03' = poYS/ 

°23 3 [Imn] m' = 0.7590 40°37' m2c66 + n2css 0.7673 0.7664 
n ;, 0.6510 49°23' = POY

S1
2 

The known experimental errors occurring for 
the elastic-constant measurements ' are 0.02% 
for specimen thickness, 0.003% for specimen 
orientation, and 0.06% for specimen demity. 

. Because many of the moduli were measured on 
two sets of ultrasonic units that ga\"e results 
identical to those in Table 3, system:ltic errors 
resulting from the ul trasonic equipment are 
considered negligible. Adding the known experi­
mental errors gives a total probable error <.>f 
0.083%. Although this estimate of the known 
experimental error is a generous one, it does not 
completely account for the experimentally ob­
served deviations in the values of the elastic 
constants .- This fact, however, is not surprising, 
since four different specimens of ~lightly differ­
ent compositions were used in this study. Be­
cause an appropriate composition:! I correction 
is not known, possible errors occurring in the 
measurements o\~ing to compositional variations 
cannot be accounted for. In addition, bec:luse 

slight inhomogeneities are known to occur for 
m05t n,ltural specimens, a second possible un­
known correction term must be ignored. Con­
sequently, a comprehensive. estimate of the 
probable error in the experimental determina­
tion of the elastic consmnts is not possible. As 
a. re:;ult, the scatter in the values obtai ned from 
the various modes and the cross checks for the ' 
on-diagonal moduli are taken to be indicative 
of the probable error in their measurements. 

Because the equations used for calculating 
the cross-coupling moduli depend 011 other 011-

diagonal moduli, OIl the direction cosines, and 
on the measured values of pV', it is apparent 
that their associated probable errors are con­
::iderably larger than those for the on-diagonal 
moduli. A reasonable estimate of the probable 
errors for the cross-coupling moduli may be 
determined from the Gaussian error propaga­
tion law. In this manner the probable errors 
giwn in Table 5 were obtained from the errors 

TABLE 5. Velocities of Quasi-Modes and Calculated Values of the 
Adiabatic Cross-Coupling Elastic Constants at 25°C 

Elastic Thickness d, Velocity, S 
+ c vv , 

Constant Sample N mm km/sec Mb 

c23 3 [Omn] 8.641 VQS. == 4.515 0.460 ± 0.002 
VQp = 7.624 

c13 4 [zon] 5.054 VQS 4.914 0.548 ± 0.002 
VQp = 8.055 

c13 2 [ZmO] 6.588 VQS 4.245 0.710 ± 0.002 
VQp = 8.014 
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of the on-diagonal moduli, p V', and tlw djn>c­
tion co~ines . 

Pressure dependence of , .ljeclh'e second-order 
elastiC constants. The h~l:,ic data l1 e ce:,~ary to 
determine the i>:othcrm:ll prcs::ure deri ·\·:ttiyes 
of the dIecti,'e second-order adiabatic c1:1~tic 

constants are the tran~it time of the ultrasonic 
wave at ele"ated prcs~ure t. and the "pecimen 
thickuCi's at zero preSi:ure d ... From the"e data 
the natural wave veloc'ity TV [Th urston and 
Brugger, 1964] can be calculated at cach ex­
perimental pressure by u,i ng TV = 2d./ t •. The 
pressure dependence of the quantity pJV' can 
be expressed by the first .Y expansion terms of 
the Tayl~r !:eries: . 

N 

PoW2 = Po L AftN(P"/nl) CIa) 

POW2 = ' POTV0
2 + (pOW2)'p 

+ (Po TV2
)" p2 /2 + (Ib) 

Thr fin,t Tcrm on the right-hand side of (l b) 
represent ;: the zero pre;:snre value of the re;::pec­
ti\"(~ on-di:lgonal clastic constant, or the quanti­
tic:; p"l'Q .• " or 'p . .l'Q/ u;:ed in computing; the off­
di:lgonal moduli . The rel11:lining two qu:mtities, 
(p"lP), aud (PuTT")" / 2, nre, accord illg to the 
equatioll:! of Graham [1969] and Barsch and 
F7'isillo [l9;~], rl'lated to the fir;:! and second 
prcs;;urc deri\"atin~s of the elastic constants, 
respectiwly. 

III thi5 study all data were fitted to first-, 
second-, and third-order polynomial;;, and the 
resulting coefficients and. standard deYlations 
\vere examined for best fit . On the ' basis of the 
criteria discussed in the appendix, the data for 
the longitudinal modes are fpund to fit the first­
order polynomial best in all cases. The data. for 

-the shear and ' quasi-shear modes, howeyer, re-
quired -a second-order fit., and thus a !:tatistically 
significant nonlinearity was indicated. As is 
shown in the appendix, a fit to a third-order 

1.08,..----,.----,------,,.------,,.------,,.-----, 

N " [bOil (c 
U "[0011 33

1______. 

1.06 N" [0101 ) 
U" [0101 (C22 

_ ... 1.04 
"-o 

1.02 

12 
Pressure (K b) 

Fig. 2. Experimental .Iut:l of (t~/I r)' as a function of pres~ure for the on-diagonal moduli 
Cn, C"'" und 1",.,. Solid and open eire·les. ~oliu triangles, :md open squares indicate specimen 1; 
open triangles, specimen 3; :;alid "qua res, specimen 4. 
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polyno~ill could not be justified for any of the 
shear or quasi-shear modes, with the exception 
of three modes belonging to the moduli c" and 
COl. These three modes represent borderline cases 
and were for the sake of uniformity also fitted 
to secon~-order polynomials. 

In all, 23 pressure tests were performed on the 
four specimens used in this study. In this way 
many c"ross checks of the pressure dependence 
of the elastic C0l15tants resulting from different 
propagation directions in the specimeus could be 
examined for consistency. As typical examples 
of unprocessed pressure data, the normalized 
quantity (to/ t.)2 = (lV/W 0)2, where to denotes 
the transit time at zero pressure, is plotted 
versus pressures for the modes corresponding to 
the on-diagonal longitudinal moduli (Figure 2) 
and for those corresponding to the shear modulus 
Cn and the cross-coupling modulus C13 (Figure 3). 
To"illustrate the nonlinearity for the shear modes, 
the initial slope for N = [001] and U = [100] 

(Css) (Figure 3) has been linearly extrapolated 
to higher pressures. It is also apparent (Figure 3) 
that the quasi-shear mode corresponding to C'l 

also shows a distinctly nonlinear behavior. All 
solid lines in this figure represent the quadratic 
least-squares fit according to 

(W/WO)2 = (toltr)2 

= 1 + (W2/W02)'p + (lV2/lVo~"P2/2 (2) 
For calculating the first pressure deriyatives 

"of the elastic constants from the measured 
values of (PoW')', the i50thermal single-crystal 
bulk modulus K/ and the isotherm"al compli­
ance coefficients Sp/ are required. The adiabatic 
single-crystal bulk modulus can be determined 
from the general expression 

Ko S = (Sii;/)-l (3) 
and converted to its isothermal counterpart by 
Overton's [1962] equation 2. This equation 
gives Kos = 1.021 NIb and K/ = 0.998 Mh. 

1.03 

{

Quadratic 
N = [0011 fit ~ 

(CS5) 

N .... ... 
..... 
o 

1.02 

1.01 

1.00
0 

U = [ 100] Initial 
. slope I 

\/ 
'I 

I , 
N " [1001 (C ) _-1'''-''""1 
U=[OOIl 55 

2 4 6 

II [POn! (C ) 
lI[n01] 13 

8 10 
Pressure ( Kb) 

12 

Fig. 3. Experimental data of (t,,! l r)' as So function of pressure for the clastic moduli Coo 

llnd cu. Solid squares and solid cirdes indicate specimen 1; open ~quarcs, specirnen 3; solid 
and open triangles, specimen 4. 
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TABLE 6. · Adiabatic and Isothermal Elastic Compliance Coefficients at 25·o C 
(AU values in ~!b-l.) . 

Coefficient Adiabatic Isothermal 

BU 0.525·3 
B22 0.7453 

· 8.3.3 0.5231 
8 44 1.223 
8 55 1.325 
8

66 1.288 
B12 -0.2053 
8 13 -0.0914 
8 23 -0.1095 

The adiabatic compliance coefficients can be 
determined by im·ersion of t he adiabatic cla5tic­
con&allt matrix, and the isothermal compliance 
coefficie?ts can be calculated from Th u.rston 
[1967] : . 

Si;H T = Si;H S + (Ta;jau/ PoCp ) (4) 

where ·all are the linear thermal-expansion co­
efficients, T is the temperature, and Cp is the' 
specific heat at constant pressure. The thermal­
exp:msion coefficients of bronzite used were 
determined by Fri~-illo alld Buljan [1972], and 
the specific heat wa5 calculated from the prC5ent 
elastic data [Anderson, 1965]. The value ob­
tained for Cl' = 94.66 Dlole-1 °K-1

• The adiab:ltic 
elastic compliances are tabulated in Table 6 
together with the i50thermal values calculated 
from the preceding data. 

First preSSU1'e deriva.tives 0/ effective secolld­
order elastic constants. The isothemlal first 
prC5sure derivatives of the adiabatic effective 
elastic constants were calcubted by using the 
equ..'l.tions given by GraJlam [1969] and Barsch 
alid Frisillo [1973] (Table 7). The internal cross 
checks resulting from orthorh~mbic symmet ry 
coupled with checks from the four different 
specimens show excellent agreement in the com­
puted values. . . . 

Because an intercrystal cheek on the pressure 
deriyatives of Cn was not possible, the reliability 
of the measured values was examined by making 
h\'o independent pressure runs. Although the 
cros..c:.-coupling moduli may abo hI:! determincd 
by propagation of quasi-longitudinal modes,. 
their echoes became. very small and Ilondi:-;tillc.t 

---

0.5259 
0.7474 
0.5259 
1.223 
1.325 
1.288 

-0.2029 
-0.0886 
-0.1070 

at pressures of about 4.5 kb and were not detected 
by the automatic peak finder. Because this 
phenomenon ·was ob~erved for all longitudinal 
pressure runs, all longitudinal data above approx­
imately 4.5 kb ~were taken manually (i.e., without 
the automatic peak finder). Because a small but · 
significant amount of curvature was observed 
for all shear moduli and because the manually 
taken data were not precise enough to describe 
this curvature, consistency" for the pressure 
derivatives of the cro55-Coupling coefficients was 
again determined by repeating the quasi-shear 
pressure runs. A single quasi-longitudinal run 
was performed for propagation direction N = 
[Onm] and polarization U = [Omn] and was then 
used as a consistcncy check for ((Jc23/ (JPh = cu' 
and as an independent check on the accuracy of 
cu'. An independent check on Cn ' results from 
considering the expressions given by Fisher and 
McSkimin [1958] to calculate the direction 
cosines for propagation direction N = [Omn]: 

2 
m 

P Vo / + P VOp
2 

- (ca/ + c~/) 
C22

S 
- enS 

(5) 

where m' + n2 = 1. By differentiating (5) with 
respect to pressure and solving for c';, the" fol­
lo" .. ing expression is obtained : 

Caa' = {[(p ir~/)' + (p V~OS' - c./Jn 

- (p V op 
2 + P V OS 

2 
- c .. )2n' 

- (2m'cu + fflC22')nm + 2m
2n'c2211n

3 
(6) 

Her~ 7Il' and n' denote the first prC5mre de;iya­
ti\'!~s of the direction cosines, which can be c31-
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TABLE 7. Isothermal First Pressure Derivatives of the Effective Elastic Constants at 25°C 

Weighted ... U (3a StaP)e a Specimen N [a (peW2 )/aP] 0 Average 
11\1 11\1 . 

all j [100] [100] 9.86 11.08:t 0.06 11.04 :t 0.06 1 [100] [100] 9.72 10.94 :t 0.09 

°22 1 [010] [010] 9.07 9.27 :t 0.07 9.19 :t 0.08 
4 [010] [010] 8.90 9.1l :t 0.07 

033 1 [001] [001] 15.69 16.40 :t 0.06 16.42 :t 0.04 1 [001] [001] 15.72 16.44 :t 0.06 

0 .... 1 [010] [001] .2.25 2.35 :t 0.01 
4 [010] [001] 2.36 2.46 :t 0.01 2.38 :t 0.03 
1 [001] [010] 2.08 2.36 :t 0.01 
1* [001] [010] 2.12 2.40 t 0.02 

aSS 1 [100] [001] 2.58 2.98 :t 0.01 
3 [100] [001] 2.45 2.85 t 0.01 2.92 t 0.04 
1 [001] [100] 2.71 2.97 :t 0.02 

066 1 [100] [010] 2.36 2.77 t 0.01 
3* [100] [010] 2.35 2.77 t 0.01 2.75 t 0.01 
1 [010] [100] 2.61 2.71 :t 0.02 
4 [010] [100] 2.61 2.71 :t 0.02 

e12 2 elmO] [miD] 1.66 6.97 t 0.14 6.97 t 0.10 2· 1.66 6.97 t 0.14 

ell 4* [zOn] . [nOi] 2.21 9.11 t 0.14 9.09 t 0.10 4* 2.19 9.07 :t 0.14 

a23 3 [()nn] [anm] 1.64 8.69 t 0.10 8.73 :t 0.10 3* 1.57 8.83 t 0.15 

*Run made with Arenberg PSP AFC ultrasonic equipment. All other data were taken with ~ffiL PSP APC 
equipment. 

culated from the isothermal elastic compliances 
[Graham, 1969; Barsch. and Frisillo, 1973]. The 
computed cross checks c.~ = 8.72 and c'; = 
16.53 are in excellent agreement with their 
corresponding values in T able 7. The agree­
ment of the check on c",,' illustrates the ~elf­
consistency of the data, since knowledge of c .. 
and c", and of their first pressure derivatives is 
required for the c!\lculation. 

To test the possibility of inherent systematic 
error in the MRL PSP AFC ultrasonic equip­
ment lIsed to obtain most of these data, 
several pressure runs were made with a differ­
ent ultrasonic unit (Arenberg PSP AFS). The 
agreement of the cbta obtained by using the two 
ultrasonic units demonstrates that systematic 
errors from the electronic system are \'ery smal l. 

The erron; shown in Table 7 for (i)cliV' / iJP). 
are based on the stancbrd dPviations of the le:lst ­
squares curve fit of (pH"').'. Becau::e the major 
source of error in (pP)o' ari5E's from (pW')o', 

the standard deviation of the curve fitted to 
the raw data can be considered as a reasonable. 
estimate of the probable error for each run. 
The error given for the cross-coupling moduli 
was determined from the errors of (pJl")0', of 
the pressure coefficient of the on-diagonal mod­
uli, and of the direction cosines by means of 
the Gaussian error propagation law. In se\'ernl 
cases the differences between the nlue of 
(iJc,,/lilP). obtained from different modes a re 
larger than the standard errors of the incli­
\'idu:ll funs. Therefore the 'weighted average' 
\'alues (V) were determined by 

v = ~,TrY. / tr Jr i (7) 

where W. = 1/(s,d.)' for the ine!i"iclual runs 
:lne! V. are the corr~poncling values of (i)c~.sl 

ilP). to ue :l\'erag~~ . The error.~ for the weighted 
:l \'erage ":ilul's WE're estimated :I('cording to 
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(8) 

where u, is the l't:lnd:lrd ('Tror of e:I[·1I " alne 1', 
and n is the number of mode5 to be a \"('rnged. 
(This formula has been su gge~t('d to the aut hors 
by H. H . Dem:u e.::i t, Jr.) This formul a is a 
useful exiellsion of the G:1u;;~ia ll error propa­
gation law to which it redutes .in the case of 
perfect consistency (1', = (l') for all i) . Its 
"aIidity is restrict ed to the case of good con­
sistency «V, - (V» ' < u/l. For 'inconsistent' 
data «V, -(1' » ' > uo') the factor n in the 
denominator has to be replatcd by the value 
(n - 1), and in the limit (V, - (l'): « u,' 
the revised formula reduc(~ to the regular ex­
pression for the standard er rors of t he lwerage 
(V) obtained from 11 independent single meas­
urements of V," For the data in T ables 7 alld 8 
the consistency is good, and the use of (8) is 
therefore justified. 

Second pressure derivatives of effec tive sec­
Of/d-order elastic constants. For calculating the 
second pressure derinltiyes, the isothermal first 

pr('~"ure derivative of the isothermal single­
("f~·!' t a l bulk modulus is required. This deriva­
tin' i,... found by ming the general relation 
[Thurston, 1967] 

(aKoSj aph = (Kos)%(S"p;/{3 ; ik~ Ski .. .!) (9) 

to determine the isothermal derivatiye of t he 
adi:lb:ltic bulk modulus (Kos )' = 9.63 and then 
cOIl\"erting: this value to the purely isothermal 
derh·ati\·e (K/ ), = 9.42 by using Barsch 's 
[1967] .equation 5. The quantities {3<H ,' appear­
ing in (9) are the thermodynamic preS5ure 
derivat ives of the single-crystal adiabatic elastic 
CCll5tants. The equations necessary to conyert 
t he measured effect ive derivatives to thermo­
d~ namic quantities have been given by Thurston 
[1965]. By using the equations of Barsch and 
Frisillo [1973] , the second pressure deriYatiYes 
of the effecti ve elastic constants have been COID-
11Uted (Table 8) . It should be noted that the 
quantities c .. ", Croti" , and c." are negat ive but. 
that the secortd ~erivati\'es cd', c,.", and c",," of 
the cross-coupling moduli are positive, These 
positive values result frOID a change in sign 
when t he negat ive values oJ (PoW)" are sub­
tra.cted ill determining (pV2

)", used in COID-

TABLE 8. Isothermal Second Pressure Derivatives of 
the Adiabatic Effective Elastic Constants at 25'C 

'\. [a2 (poW2)taP2] 0, [a 2c""S taP2.] 0' 
Weighted 

N .. Average, 
Specimen U Mb-l Mb-l Mb-l 

1 [010] [001] -30.0 !: 1.8 -31.S 
4 [010] [001) -33.6 :t 2. 3 -35.1 -28.1 :t 2.S 
1 [001] [010] -24.3 ± 1.6 -23.4 
1* [OOlJ [OlOJ -26.3 ± 2.4 -25.2 . 

1 [lOOJ [OOlJ -61.5 :t 1.6 -62.3 
3 (100) [001 ] -54.1 :t 2.2 -55.0 -59.5 :t 2.2 
1 [OOlJ [100] -59.1 :t 3.0 -57.8. 

1 (100] [OIOJ -17.0 ± 1.4 -18.1 
3* [lOOJ [010] -13.4 :t 2.4 -14.7 -17.3 :t 1.2 
1 [010] [100] -17.2 !: 3.8 -18.6 
4 [OlOJ [100] -15.9 ± 1.9 -17.2 

2 [bnO) [mYO) -23.4 ± 2.2 49.3 (50.7)t .2* (ZmO) [m!O) -25.1 :t 1.6 51.4 

4* [ZOn] [nO~ -42.4 ± 4. 7 64.4 (66.3)t .* (ZOnJ [nO] -44.2 :t 5.5 68.8 

· 3 [Omn] [0Mi) -30.8 :t 3.0 64.4 (62.0)t 3* [OmnJ [oniii] -30.0 ± 5.1 68.8 

*Test made with Arenberg PSP AFC ultrasonic equipment. All other data taken with MRL PSP Ate 
equipment. 

tCalculated by a~swning cll", cn", and c33" to be zero. 
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puting the second pressure derivatives of the 
cross-coupling moduli, and from the assump­
tion that the second pressure deri\·ati\"es of the 
on-diagonal longitudinal moduli, which also enter 
the calculation, are zero. Although the change 
in sign follows from the equations u~ed to com­
pute the quantities (p V')", it is important to 
note that any nonlinear behavior for the on­
diagonal longitudinal moduli is not precluded by 
the present ~tudy, since the longitudinal data 
were very difficult to obtain at higher pressures 
where curvature might be obserwd. Because 
there is no reason to suspect that these coeffi­
cients behave linearly under pressure when the 
shear coefficients do not, it is likely that the 
second pressure derivatives of the on-diagonal 
longitudinal moduli are also nonzero. Conse­
quently, the values and the signs of the second 
pressure derivatives of the cross-coupling moduli 
depend on the magnitude and the sign of the 

--~ 
~ 
:s. 

u 

1.00 

0.98 

" 0.96 
j:: 
~ 
:s. 

u 

0.94 

N=[OIOl(C) 
U a [010] 22 

on-diagonal longitudinal modes. It is probable, 
therefore, 'that, although the determined values 
of (p.,n" )" are excellent, the computed values 
for c,," , C13", and c"," (Table 8) are considerably 
in error. As a result, a complete description of 
the nonlinear behavior of the bronzite specimens 
cannot be given in this study. One important 
conclusion re:mlting from the present data, how­
ever, is that the elastic properties of possible 
earth materials can show curvature even at 
pressures as low as 10 kb. However, owing to a 
solid-solid phase transition, which should occur 
at about 135 kb [Ringwood, 1967; Ahrens and 
Gaffney,. 1971], the curvature in the bronzite 
data should not play a significant role in the 
earth's interior. 

The stated errors for each run in Table 8 
are the standard deviations resulting from fit­
ting the data to a quadratic function in pres­
sure. The weighted averages and their ll.."5ociated 

[001] (C
ss

) 
[100] 

0.92 0 '=------,1~0,.",0----,:-!-:----~---4..,--:!00 

Temperature (OC) 

Fig. 4. Experimental data of the on-ciiagonal elastic constants Cu, C,-=" C:s3, and c", (referred 
to their values at To = 2S0C) a~ a fun ction of tempemture. Soli.l .triangle", solid squares, 
open circles, anu crosses indicate specimeu' 1; open triangles; specimen 3; solid. circles, speci­
men 4. 
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TABLE 9. Isobaric Temperature Derivatives of the 
On-Diagonal Elastic Constants at 25° to 350°C 

Elastic 
Constant Specimen 

-+ -+ 
N U 

cll 1 [100] [l00] 
3 [100] [.100] 

c22 1 [010] [010] 
4 [010] [OlO] 

c33 1 [001] [001] 

cit .. 1 [001] [010] 
4 [010] [001] 

css 1 [001] [100] 

c66 3 [100] [010] 
4 [010] [100] 

errors were deter:mined by (7) and (8). The 
difficulty of accurately specifying the second 
pressure derivatives is reflected in the relatively 
large scatter in the present data. However, 
because this difficult.y exists, even for synthetic 
. single-crystal specimens (see, for example, 
Chang and Barsch [1971] and Barsch and Shull 
[1971]), and because four different naturally 
occurring specimens were used, the consistency 
of the determined second pressure derivatiyes 
must be considered as excellent. 

As was mentioned above, cross checks on the 
second pressure derivatives of the cross-coupling 
moduli by using the quasi-longitudinal modes 
were not possible. Therefore the consistency of 
the results was examined by repeating the pres­
sure runs for the quasi-shear modes. The repro­
ducibility and the agreement. of these data and 
tbo~e for c.:' and c..". obtained by using two 
different sets of ultrasonic ' electronic equipment. 

-support the noruil1ear elastic behavior of . the 
shear moduli beyond any doubt. 

Temperature dependence of second-order 
ela.stic constants at 1 atm_ The temperature _ 
dependence of the quantities p V', which are 
neces5:uy to detennine the temperature deri\-a­
tiv~ of the elastic constants, has been directly 

C'acll"//OT)p=O' 
Weighted 
Average, 

kb °C- 1 kb °C- 1 

-0.352 ± 0.001 -0.352 ± 0.001 -0.353 ± 0.001 

-0.328 ± 0.001 -0.328 ± 0.001 -0.329 ± 0.001 

.;0.516 ± 0.004 -0.516 ± 0.004 

-0.128 ± 0.002 
-0.131 ± 0.003 -0'.122 ± 0.002 

-0.138 ± 0.002 -0.138 ± 0.002 

-0.133 ± 0.001 -0.145 ± 0.005 -:0.150 ±-0.005 

. determined by making the appropriate dem:ity 
and length corrections. Because the on-diagonal 
elastic moduli are gi\'en by c~/ = pli', the 
temperature derivati\-es for c~~ 8 are explicitly 
determined by fitting a polynomial to the data 
for pl" as a function of temperature. The tem­
perature dependence of p l" for the on-diagonal 
moduli Cu , CO2 , C33 , and c .. is plotted in Figure 4. 
The values have been normalized by dividing 
by cl'.(To), with To = 25°C. 

The values for the temperature derivatives 
of the on-diagonal elastic constants and their 
standard deviations as determined by a poly­
nomial fit to these data are presented in Table 
9. In all cases the temperature dependence was 
found to be linea.r, within experimental limits, 
up -to 350°C. The equations necessary to calcu­
late the temperature derivatives of the cross­
coupling coefficients have been given by Graham 

"[1969] and Fri§illo [19i2]. 
The experimental data necessary to comput.e 

the temperature dependence of the cross­
coupling coefficients have been given by Graluim 
ences of the values of p yo for the quasi modes. 
These data, again normalized by dividing by 
the initial value Pol'o', are presented in Figure 5. 
The computed values for the derivatives of the 
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Fig .. 5_ Experimental data of p 112 (referred to the value at To = 25°C) for the qU:lsi-shear 
modes used to determine the cross-coupling moduli C'"" C13, and C:.. .. as a function of tempera­
ture_ Circles indicate specimen 2; squares, specimen 3; triangles, specimen 4. 

cross-coupling moduli are presented in Table 10. 
The stated errors and the weighted a\-erages 
and their errors have been determined by using 
the error propagation method and (7) and (8), 
respectively. 

DISCUSSION 

Comparison of bronzite data with those of 
other authors and for other materials of geo­
physical. interest. The single-cry~tal ebstic con­
stants of orthopyr0xene at room temperature 
and 1 atm h:n-e been measured pre\-iously by 

Ryzhova et al_ [1966] and Kumazawa [1969]. 
The elastic constants of orthopyroxene from 
thcse authors are compared with the results 
presented here (Table 11). Because the speci­
men used by Ryzlwva et at. [1966] had a. large 
porosity (1.8%), their reported \"alues are sig­
nificantly low in some cases_ The present data. 
and those of Kumazawa, however, compare 
favorably, the dastic constants in the preEent 
5tudy being somewhat smaller, :lpp:uently o\\;ng 
to the increased iron concentration. Because 
\-alues for c"" and c,., howe\-er, are highcr than 

TABLE 10. Isobaric Temperature Derivatives of the Cross-Coupling Elastic Constants at 25· to 350·C 

Elastic -+ -+ [3CpV2)/3T]p=0 [3C\1v/aTlp=o 
Constant Specimen N U kb ·C1 • kb ·C- • 

e12 2 [ lnIOJ [lnIO] -0.417 -0.212 0.007 
eU 4 [LOn] [LOnJ -0.462 -0.318 0.008 
e2l l [Omn] [Omn] -0.388 -0.107 0.007 

---_.-
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TABLE 11. Comparison of Adiabatic Single-Crystal Elastic Constants 
c S of Orthopyroxene with Those of Other Investigators at 25°C 
~\I (All values in l-ib.) 
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Present Work KumazalJa [1969] RzJzhova et ale [1966] 
(MgO.8FeO.2Si03) (MgO.84FeO.16Si03) (Not Analyzed) 

2,.286 2.299 1.876 
1.605 1.654 1.578 
2.104 2.057 2.085 ' 
0.8175 0.8306 0.700 
0.7548 0.7637 0.592 
0.776 0.7853 0.544 
0.710 , 0.701 0.586 
0.548 0.573 0.605 
0.460 0.496 0.561 

those of Kumazawa, careful consideration was 
given to checking the 11 conditions for these 
modes' that might cause such disagreement. No 
such error was found in the present study. 

olating his single-crystal data on the pure 
end-member .Mg,SiO. [Graham and Barsch, 
1969] and those of Kumazawa alld Anderson 
[1969] on (Mgo, .. Fe.,oT)"siO •. In addition, iso­
tropic elastic-property data. of garnet of the al­
mandine pyrope variety [Soga, 1967] are pre­
sented. It is apparent that the densitie:;, the 
bulk moduli, and the shear moduli of ,the two 
brODzite specimens are rather similar but that 
the values of (ilKs/ilP)" differ by almo<;t a 
factor of 2. Without further systematic work 
on well-characterized polycrystalline specimens, 
any attempt to explain this large discrepancy 
would be merely speculative. The elastic data 

The isotropic elastic constants of bronzite and 
their derivatives with respect to pressure and ' 
temperature as calculated fr9m the single-crystal 
data by means of the Voigt-Reuss-Hill (VRH) 
approximation are compared with some experi­
mental data on polycr'ystalline bronzite contain­
ing 10% enstatite [Chung, 19711 (Table 12). 
Also included for compari:;on in this table are 
the isotropic properties of 20% fayalite olivine 
obtained by Gralurm [1970] by linearly extrap-

TABLE 12. Comparison of Isotropic Moduli and Pressure and Temperature 
Derivatives of Bronzite ~gO.8Feo.2Si03) with Those of Polycrysta11ine 

Bronzite ~go.9Feo.lSi03)' Olivine, and Garnet at 25·C 

Par&llleter Bronzite* 
BTonzite, 

10% Enstatitet 
Olivine, 

20\ FayaliteS 
Almandine-Pyrope 

Garnett 

-- ----~--

"From this study. 
tFrom Chung [1971]. 
§Froll Graham [1970]. 
'From saga [1967]. 

3.354 
1.035 
0.9878 

.. 9.59 
9.47 

-0.268 
-0.296 
0.755 
2.38 

-0.119 

3.273 
1.06 

S.3 

0.768 

3.459 
1.256 
1.226 
5.09 
5.16 

-0.193 
-0.223 
0.788 
1.74 

-0.142 

4.160 
1. 770 
1.757 
5.43 
5.45 

-0.201 
-0.201 

0.943 
1.<400 

-0.106 
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of Qlivine differ ;;o!l1e\\·hat but not ~rc;\tly from 
the present brollzite data, except in T hI' \·:tIlte of 
(iJKSjiJP)r, for which a difference of a iactor of 
about 2 occurs. Becauo;e the Fej~Ig ratio in both 
materials is approximately the same, thi:; differ­
ence i.s attributed to the different crystal srnlc­
tures. Although the composition of the garnet 
specimen differs con:;iderably from the compoi'i­
tions of the bronzite and olivine sample::: (it cor­
responds to an almandine to pyrope ratio of 
about 3: 1), the pressu re coefficients of the bulk 
modulus and of the shear modulus are closer tei 
the values for the oli\·ine sample. The contrast 
with the bronzite data underlines again the 
unusual propertie~ of the enstatite structure. 

It is important to note that, from the com­
pression data of Bridgman [19-1S] on hyper­
sthene, an equally large v~llue for the isothermal 
first pressure derivative of the bulk modulus is 
obtained. Bridgman's data are expre:osed in the 
form (VO - Vi/V = aP + bP", where Vo and V 
are the specimen volumes at ambient and ele­
Yated pre:osures, respecti,·ely, a = l.08 Ml:" 
b = 5.2 Mb-', and po = 3.42 g/cm' for the 
hypersthene sample studied. The i50thermal bulk 
modulus and its isothermal pressure derivative 
are obtained from the relation" [Allde.rson, 
1966] A."" = 1/a = 0.9259 J.\Ib and (iJKT jiJPh 
= 2b(KT)-1 = 7.9. Although Bridgman'S data 
are le:os accurate than the present acoustic data, 
the large value of (iJKT/iJP)T obtained from his 
mea~urements is indica ti,-e of the anomalous 
beha\·ior of orthopyroxene at high pressure. 

Incomplete wlocity measurements as a func­
tion of temperature and pressure have also been 
performed on natural rock specimens containing 
primarily bronzite [Hughes and Nishitake, 1963; 
Birch, 1960; Simmons, 1964]. The5e <bb ha'·e 
been combined by Anderson and Sammi.s [1970] 
to gi\·e the complete set of data of the ,·elocities 
and their derivatives with re:;pect to tempera­
ture and pres:;ure (Table 13). The results cal­
culated from the pre:3ent "ingle-crystal data by 
means of the vn H a \·er:rge are also shown 
for comparison. Although, because of porosity, 
heterogeneity, ana grain size, the acrur:1CY of 
data from natural rock "pecimens i5 usually not 
very good, the two sets of data shown in Table 
13 are in fair agreement. 

,\'olllillearity of pressure depel/dence. In Fig­
ure fi t he pressurE' url't'lIllrncr of ! he on-di:\!!:ullal 
shear moduli i:; plot teel as calrulatru frum the 

TABLE 13 . Comparison of Present Bulk 
Velocity Data Obtained by Using \~H Averages 
with Those Heasured in Bronzi te Rock Samples 

Parameter 

P. g/cm 3 

Vp, km/sec 
Vs , km/sec 
(avp/ap)T' 10- 3 km/sec kb 
(avp/aT)p. 10- 4 km/sec ·C 
(Ws/dP)T' 10- 3 kmfs"ec kb 
(aVS/aT)p , 10- 4 km/sec ·C 

Present 
Data 

3.354 
7.78 
4.72 

20.57 
-9.08 
5.16 

-4.86 

Anderson 
and Sanr.r-:.s 

[1970] * 

3.279 
7.64 
5.59 

19.00 
-6.40 
7.00 

-6.00 

*Based on data from Huahes and lIis·hitake 
[1963], Birch [1960]. and Simmons [1964]. 

measured elastic· data according to the linear 
approximation 

c". = c,,/' + (ac"./ap)op (10) 

and according to t he quadratic appro:\imation 

c". = c",o + (ae",/ ap)op 

+ (ilc,,'/iJP)O(p2/ 2) (ll) 

It is apparent that, at pressures above about 
20-30 kb, considerable de\·intions from the linea r 
relation (10) arise as a result of ·the quadratic 
term in (11) and that, for e" and C"" maximum:; 
occur at about 85 and 50 kb, respectively. With­
out knq,,"ledge of the derivatiYes higher than 
second order or of the convergence of the Taylor 
expansion of ·the elastic constants with respect 
to prc;:;;:;ure or both, it is, of course, not p05sible 
to rstablish the exact functional dependence on 
pre5;;urc in the range considered. Because calcu­
lations for :llkali halide:o based on model poten­
ti:ll::: show that the exact pressure dependence 
falls between the linear dependE:'nce and the 
quadratic depcndence [Barsch and Shull, 1971], 
it is not unreasonable to expect qualit~lti\"ely 

similar behavior for bronzitc. Thuii for two of 
the thrre on-diagonal shear moduli a sub~tan­
tial de\·iatioll from Ilonlinmrity would remain, 
evcn if the quadratic tenns would be reduted , 
for example, to half t1leir valuc5. 

The rcmainin~ shcar moduli are fUlIctions of 
the on-diui!:ortal 10llgitudinal mocluli CIl, C~" und 
Ca, of the cro;;;;;-('oupling moduli (.". C'3, and e'30 
and of the direction co.<ine~ of the prop:lgntiol\ 
dirrctiun. Becau:,p it wa:; lIot po:,,,ihle to mcasure 
the ;;('cond pre~~ure deri,·atiws of the ull-clia~ol\:ll 
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Fig. 6. Pressure dependence of ou-diagonal 
shear constants. Dashed lines indicate linear ex­
trapolation; solid lines, quadratic extrapolation. 

longitudinal moduli, the second pressure deriva­
tiyes of these shear moduli are still unknown. 
However, because the nonlinearity found for 
the quasi-shear modes (see, for example, the 
curve for N II [iOn] and U II [nOll in Figure 3) 
and the second pressure derivatives of the cross­
coupling moduli determined from the assumption 
(a~c •• /ap,) = O· (J-L = 1, 2, 3, no summation) 
(Table 6) are of the same order of magnitude as 
those of the on-diagonal shear moduli, it is t<> be 
expected that the second pressure derivatives of 
the remaining shear moduli are of the same order 
of magnitude. By the same t<>ken, the second 
pressure derivatives of the isot.ropic shear modu­
lus, which depend in the VRH approximation on 
the second pressure derivatiYes of all nine elastic 
constants, should be expected to be roughly equal 
to the average of the second pressu re deriYatiYes 
of t.he on-diagonal shear moduli (approximately 
-33 i\lb- '). In connection with the values of 
the isotropic shear modulus (0.75 :'Ib) and its 
fir~t pressure derivati"e (2.38) , it is thus apparent 
that, at the highest pressures of the stability 
range of orthopyroxene (about 90-135 . kb 
(RinglL'ood, 1967; A.I:imo'o and S!JOIlO, 1970; 
Ahrens and Gaffney, 1971]), small cleviations 
for a nonlinear pressure dependence may be­
come !loticea.blc and should be included in 
accurate geophysical application!". 

To compare the magnitude of the !>econd pres­
sure dcrh",'lth'es of the da:'tie con~t:lIlts '';'ith 

the corre::pondi ng YaItH's o( ot hpr materials, it 
IS conyenic- nt to consider the dimC'nsionless 
quantity KT(u'c,,/ uP') . With K r = 0.988 Mb 
and the data of Table S, this quantity i!> !>een 
to range from -14 to -57 for the three Oll­

di,igonal ::hea r moduli. For t he eight alk:lli 
halides for "'hich the second pressure deri\"a­
tiYes of the elastic constants have been meas­
ured and which represent both the rocksalt- and 
t he cesIUm chloride structures, the quantity 
KT (a 2c .. / uP') ranges from -1 to -4.5 [Chang 
and Barsch , 1967, 1971; Barsch and Shull, 
1971). For !>pinel a Yalue of -5.5 has been 
measured [Chang and Barsch, 1972]. Thus 
the values reported here for bronzite ap­
pear to be anomalously large. An explana­
tion of this behayior requires a lattice theoreti­
cal analysis based on the crystal structure of 
enstatite, !>imilar to the analysis presented for 
spinel by Striefler and Barsch [19i2]. Although 
such an analysis is not yet ayailnble, it appears 
plausible to attribute the large cun 'ature to the 
phase transition or the disproportionation of en-" 
statite between about 90 :lnd 135 kb [Aki11l0to 
and SY0110, 19iO; Ahrens and Gaffney, 1971]. 
The decrea!>e of the !>hear moduli at pressures 
above the maximums displayed in Figure 6 in­
dicates dE:Cfeasing mechanical stability paralleled 
by decreasing thermodynamic stability and the 
occurrence of a phase transformation before the 
mechanical stability limit (e.g., if the quadratic 
extrapolation is used, c .. = 0 at P ~ 220 kb) 
is reached. 

Compression of bronzite at very high pres':' 
sw·es. The ultra!>onic equation of state 'has 
been calculated from the pre!>ent bronzite data 
by using the first-order Birch equation (Fig­
ure 7). For illustrati"e purposes only, the non­
linear elastic data for bronzite have also been 
e:drapolated by 'using the second-order Birch 
equation of state. These 'data are also included , 
in Figure i . Although the nO!~Jinear data are 
quite u,ncertain, it is interest ing to note that 
the deviation from the linearly e:\1rapoJated 
data is quite sl11all at 150 kb . If geophysical 
applications ,,,here temperature effects are im­
port:mt to depths of >200 km are considered, 
it is unlikely that this 8mall difference caused 
by the cun"ature will play an important role 
in the equ:ltion of state. This conrlusion is no 
longer ,"alid, of course, if the orthopyro~ene­
garnet tra.nsition doC's not. occur and the stability 
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Fig. 7. Comparison of ultrasonic equation of state for bronzite calculated from Birch's 
equations with static-compre~on data of Bridgman [1948] (circles) and shock-wave data of 
Ahrens and GaffT!ey [1971] (triangles and dashed lines). 

range of the orthopyroxene structure extends to 
higher pressures, say, to about 20(}-300 kb, or 
if the nonlinearity of the on-diagonal longitudi­
nal constants turns out to be very large. 

In addition to the acoustic measurements of 
this study, isothermal-compression data on hy­
persthene to 40 kb [Bridgman, 19-!SJ and shock­
compression data on Bamle enstatite [Ahrens 
and Gaffney, 1971] have been included in Figure 
7 for comparisoin. Although a direct comparison 
with the present data is not possible because the 
shock data. are not isothermal, it is worthy to 
note that the three shock points between the 
Hugoniot elastic limit, where en~tatite should 
behave plastically, and approximately 150 kb 
are in rea50nable agreement with the prescnt 
data. Further examination of the shock data in 
the 150-kb regions "hows II discontinuity indica­
tive of a possible pha.-<e tran~ition . By con~t rue­
ting an enstatite isentrope with KUl1lazQ u;a's 

[1969J yalue of the adiabatic bulk modulus and 
an assumed low pressure derivati\'e of 5.0, 
Ahrens and GafJney [1971] argued that the final 
Hugoniot states abO\'e a level of approximately 
135 kb lie at a greater den5ity than that indi­
cated for the enstatite isentrope. By converting 
their values used for calculating the eDstatite 
isentrope to i:;othermal quanti ties, the e;..'trapo­
lated curve al::o shown in Figure 7 wa" obtained. 
However, \\:hen the present data are compared 
with the shock-comprr:;sion values, the discon­
tinuity is more com'incingly illus trated, and 
thus the interprptation of a ph:lse tranii ition in 
the \'icinity of 135 kb is 511 pported. 

Pressure dependence of lattice parameters. 
Thurston [l96i] has propo:;ecl an eqllation of 
state that permits the calculation of the lattice 
parameter:; 0, ( i = 1, :!, 3) as a function of 
pre5SUfr from the princip:1I st retches '\, accord­
ing to 

. 
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ai(?) 
Ai = --0-

a; 

t = 1, 2, 3 
The index 0 refers to zero pre~i!lIre, The p:U:Ul1e­
ters TIl, uud 11, deprnd on the i~othermal el:t stic 
compliances and the isotherm:d pre~5ure deriya­
tive:: of the isothermal efiectiye el3~tic con­
stants according to (I, SS), (I, 90), (II, 9), and 
(II, 15) of Thurston [1967]. Their numcrical 
values as calculated from the experimental d:lta 
of Tables 6 and 7 arc li~ted ill Table 14, Also 
included in this table are the zero pres~u re 

lattice' parameters a,o as determined from X-ray 
measurements in thi;; bborutory [Frisillo and 
Buljan, 1972] (the;;e values agree quite closely 
with those reported by Wyckoff [196S] for 
:;\1go,_Feo,=SiO., namely, ao = 18,310 A, bo = 
8.917 A, and Co = 5,216 A) and the linear com­
pressibilities a, = (CJZna, jCJ?lr and their pres­
sure coefficients (3, = (CJarla?) r a5 calculated 
from the data of Tables 6 und 7 on the basis of 
(1,88) and (1,90) of Thurston [1967], In Figure 
S the principal ;;tretches and the lattice parame­
ters as calculated from (12) a re plotted as a 
function of pressure. X a directly measured data 
are available for comparison. 

Although Thurston's equation of state (12) is 
a generalization of ?lIurnaghan's", equation of 
state and is therefore based on the linear ap­
proximation for the rlastic con~ant yersus 
pressure relation, its range of validity may be 
more limited because it is based on equation 
(II, 10) of Thurston [1967] as an a,ddi tional 
assumption. Although Thur~ton's equation has 
been wrified for seyeral materials up to pres­
sures of about 30% of the bulk modulus [ThU7'S­
ton, 1967] and for ALO, up to pressures of 10% 
of the bulk moduJ)ls [Gieske and Barsch, 1968], 

di~crC'p:lncie~ lun'e bcen reported for .\fg,8iO. 
(for;:tcrite) [Olinger flnd Duba, 1971). Apart 
from ~u('h ('xperilllC'nt:l1 errors in the high-pres­
<'nre X-my (bta of Olinger and Duba [1871] as 
may rei<lllt from nOllh)'dro~,tatie sfreEses in their 
oppo,~('(l i\m'il "FtC'm, the possibility cannot be 
ruled out th:lt the discrep:lJ1cies arise from the 

' f:!rt th.lt equation (II, 10) of Thurston [1967] 
does not hold jor for~terite. For this rea~on the 
pres;;urt' depend('nce of the lattice p:lrameters 
(Figure 8) should be considered as a plausible 
prediction only, until Thurston's equation (12) 
is tested for a larger variety of materials. Addi­
tional errors may a rise from neglecting the 
quadratic terms in the pressure dependence of 
the elastic constants and from using the iso­
thermal pressure derivatives of the adiabatic 
elastic const:lnts (Table 7) instead of the un­
known isothermal pressure derivatives of the 
isothermal ela~tic constants. Both errors, ho\\"- ' 
ever, may be expected to be small. 

With these reser\"ations about the dependa­
bility of Thurston';; equation (12) in mind, one 
can conclude from Figure 8 that the compres­
sion behavior of 'the three orthorhombic axes is 
not icea bly different. E.~peciatly notE,'\\'orthy is 
the rapid decrease of the slope of the curve for 
the c a:--;s, which indic.ltes a rapid decrease of 
the linear compressibility in this direction, At 
200 kb, for example, the linear compressibility 
of the c axis is 3 and 6 times 8maller than the 
linear compressibilities of the a and b axes, re- , 
spectively. Undoubtedly, this behayior arises' 
from t he special features of the cry~al structure 
of enstatite. This structure consists of SiO. 
ch3ins extending along the c direction and inter­
connected by the PIg, Fe) cations ['Wyckoff, 
1968]. Thus, although the initial linear com­
pressibilities along the different crystallographic 

TABLE 14. Zero Pressure Lattice Parameters a.O~ 
Linear Compressibilities a..;~ Pressur'e Coefficient~ B." 

... 1.- ' 
and Exponents m. and n. of Thurston's Equation of State 

1. 1.-

a. O• 
1- ai~ ai~ ni~ 

Axis i A Mb-1 Mb-2 m· 1- Mb -1 

a 1 18.262 -0.2344 1.858 -0.02000 -0.04448 
b 2 8.870 -0.4375 ~;603 -0.03783 -0.07828 
c 3 5.203 -0.3303 4.411 -0.04771 0.1227€ 

.. 
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Fig. 8. Principal stretches x, and lattice parameters a, of bronzite versus pressure from 
ultrasonic elastic data according to Thurston's equation of state. Here a" = 18.262 A, b. = 
8.870 A, and Co = 5.203 A. 

axes differ by only 30%, at higher compressions 
the linear compressibility of the c axis appears 
to be reduced by the greater stiffness of the 
SiO. chains against further compre::sion. 

Debye temperature and Grueneisen parame­
ter. The isotropic elastic constant data (Table 
12) can be used to calculate th~ elastic Debye 
temperatureB according to [Anderson, 1965] 

8 = h/k[(3p/41!')(Np/M)]1/3V". (13) 

where hand k are Planck's constant and ' Boltz­
mann's constant, respectively, p is the number 
of ions per primitive unit cell (5 for enstatite), 
N is Avogadro's number, and M is the molecular 
weight. The mean sound velocity Vrn is given by 
[Anderson, 1965] 

t' .. = [(v,,-a + 2vs-3)/3rI/3 (14) 

and v, and Vs are the longitudinal and shear 
velocities, respectively (Table 13). The low- and 
high-temperature limits y. and y., of the elastic 
Grueneisen parameter can be calculated ap­
proximately from [Anderson et 01., 19G8] 

'Yo = (!:13'YP + 2"(s)/(113 + 2) (1Sa) 

'Y.., = (-yp + 2')'s)/3 (lSb) 

where 11 = vs/vp and yp and y. are the average 

Grueneisen parameters of the longitudinal and 
shear modes, respectively [Anderson et 01., 
1968]: 

'YP = ! + (KT/Vp)(iJvp/aPh (16a) 

'Ys = i + (KT/vs)(avs/JPh (16b) 

where (avpjaph and (avslap).. are the pressure 
gradients of the velocities listed in Table 13. 

The quantities calculated according to (13), 
(IS), and (16) are () = 724°K, YP = 3.09, Ys = 
1.48, Yo = 1.65, and y .. = '2.02. Because no ex­
perimental specific heat data of bronzite are 
u\'ail!1ble, t.he ebstic Debyc temperature cannot 
be compared with its thermal value. 

The room temperature value of the thermal 
Grueneisen parameter 

(17) . 
is 1.S6, calculated from the experimental value 
of the volume thermal expansion coefficient f3 = 
4.70 10-5 °K-1 [Fn'sillo and Buljan, 1972] and 
from a value of Cv = 94.S0 joule ruole-1 °K-" 
which was calculated from the elastic Debye 
temperature on the basis of the Debye fun~tion 
[Bcattie, 102G]. As has becn observcd ior nu­
merOU5 other (but not all) solids, the clastic and 
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thermal Gruenei,en paramct rrs I' :lIld I agree 
surprisingly well. This :!g:rCClllcnt iih oil"~ t hat 
bronzite belongs to that large> CbS5 of 111:11erials 
for which the awrage on:r all yibrat ioml modes 
of the crystal requireJ for the cJ lcubt ion of the 

-GrueneiEen parameter in the qu:!si-h:!nnonic 
approximation [Ban'on, 1955] can be "u('cess­
fully approximated by the direction:!l a \-erage 
of the elastic modes, the dispersion and the 
contributions from the optical branches thereby 
being neglected. 

Because Yu is only 18% smallcr 1 han Ie, it 
appears that the temperature variation of t.he 
Grueneisen parameter is small. A small temper­
ature dependence of y has been ob~eT\'ed for 
many (but not all) oxide compounds [Ander­
son et 01., 1968] . 

. SUJ\DURY AND CO~CLUSIONS 

The dependence of the nine single-erystal 
elastie constants of bronzite on pressure and 
temperature was measured and showed several 
unusual features. The first pressure derivative 
and the temperature derivatiye of the longitudi­
nal modulus in the crystallographic c axis and 
the firEt pressure derivative of the bulk modu­
lus are anomalously large. These reEults are 
consistent with earlier polycrystal data and 
compression measurements of Bridgman. The 
linear compressibility of the c axis deereases 
much more rapidly with increasing pressure 
than the linear compressibilities of the other 
two axes. All theEe phenomena seem to arise 
from the more rapid stiffening upon compres­
fion of the SiO. chains parallel to the' c a~;s and 
constituting the crystal structure of enstatite. 
In addition, the pressure dependence of the 
ehear velocities along the three crystallographic 
axes, of the velocities of the quasi-shear modes 
along directions forming angles of appro:\imately 
45° with tbeEe directions, and of the aswciated 
shear moduli were found to be noticeably non­
linear below 10 kb. This phenomenon i~ attrib-

. uted to the decreasing stability of the enstatite 
structure with increaEing pres.~ure, which re­
sults in :l pbase transformation or in di~propor- " 

tionation into spinel and stishovit.c. On the other 
hand, other properties, such a ~ the magnit.ude 
and the temperature dependence of the thermal 
Grueneisen parameter and its agreement with 
the elaHic Grueneisen parameter, are entirely 
normal. 

AprE~DIX: LEAST-SQC-\HES FIT OF pon" TO A 

POLY!\O~[I.U; OF DEGREE N IN PRESSURE 

The pressure dfrintiYes of the effective elastic 
constants were determined from the expansion 
coefficients A;'" of the quantity PoW' as defined 
by 

N 

Po L A.:"(P"/n!) (AI) 

The degree N of the polynomial to which a 
given set of data points for a particular mode 
was fitted was determined on. the basis of three 
criteria. 

First, the total sum of the least-squares devia­
tion [vv] for a fit of po TV' to a polynomial of 
degree N must be significantly smaller (say, at 
least 3 times) th~n that of a polynomial of de­
gree N - 1 and not significantly larger (say, 
at most 3 times) than that of a polynomial of 
degree N + 1. 

Second. the, coeffi cients t. N = A"N / AA"N, where 
AA~N denotes the standard error of the nth­
order expansion coefficient for a fit t.o a poly­
nomial of degree N, must obey t.he standard 
Student t teEt [Draper and Smith, 1966] for a 
probability of 0.95. Because all runs consist of 
16-18 data. points of poW' (with .tbe exception 
of one run consisting of only 11 data points), 
the degrees of freedom for N = 1,2. and 3 range 
from 13 to 17, and the coefficient t,.N for a 
probability of 0.95, according to the tables for 
the standard t test [Draper and Smith, 1966], 
must be larger than about 2.1-22. 

Third, the coefficients A~'" and especially the 
highest-order coefficients A,/ obtained from in­
dependent measurements and representing dif­
ferent modes belonging to the same elastic 
modulus must be consistent wifhin their joint 
standard error. 

The application of these criteria is illustrated 
for the shear and quasi-shear modes. As can be 
seen from Table AI , the tot.al sum of the least­
squares dcyiation [v v] is, for the fit to a quad­
ratic relation (N = 2), 2.6-46 times smaller 
than that for the fit to :l line:!r relation (N = 
'1), whereas, for the fit to a third-order poly­
nomial (N = 3) [vv] is reduced by only a 
small amount ran ging from 1 to 70%. Thus the 
first criterion, with the exception of one mode, 
is satisfied for a fit to a. qnadratic relation: 

In Table A2 the quantities t,," {for the co­
efficient of po for the fit to a quadratic relation 
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TABLE AI. Sum of Least-Squares Deviation [vv) for Least-Squares Fit of W2 to 
a Polynomial in Pressure of Degree N for Shear and Quasi-Shear Modes 

N = 1 • N = 2. 11 = 3. ... ... 
Coefficient N U Sample 10-9 cm2/sec 2 10-9 crn2/se~2 10-9 cm2/sec2 

C44 (010) [OOIJ 1 25.5 1.15 0.94 
(010) (001) 4 33.4 1.96 1.92 
[OOIJ (010) I· 20.1 1.02 0.32 
(001) (010) 1 18.7 1.00 0.49 

CS5 (100) (001) 1 12.1 1.22 1.02 
(100) (001) 3 88.2 1.92 0.88 
(001) (100) 1 116.6 4.43 2.31 

c66 (100) [010) 1 9.23 0.93 0.66 
(100) (010) 3· 6.93 1.98 1.05 
[010) (100) 1 13.1 S.02 4.19 
(010) [100) 4 8.52 1.31 1.07 

cl2 [lmO) [mZO) 2· 18.0 0.89 0.83 
[lmO) [mIO) 2 17.7 0.73 0.62 

cn [lOn) [nOZ) 4· 43.1 5.62 4.43 
[lOn] [nOZ] 4· 48.5 7.67 7.61 

c23 [cmn] [0TVii] 3· 29.7 3.26 3.01 
[!mn] [OTVii) 3 27.2 7.00 5.91 

*Run made with Arenberg PSP AFC equipment. All other data were taken with MRL ~SP AFC equipment. 

and for the coefficients of P' and P' for the fit 
to a third-order polynomial) required for the 
Student t test are listed for all shear and quasi­
shear modes. It is apparent that, for the fit to 
the quadratic relation, all quantities t/ meet 
t he Student t test for 95% prohability (t 2' > 
2.1). For the fit to a third-order polynomial, 
the Student t test for 95% probability is not 
fulfilled for either one or both of the quantities 
t; and to' for mo~t modes, with the exception 
of modes 4, 6, and 7, for which t} > 2.1 and 
to' > 2.1. According to T able AI, for these 
three modes the reduction of [vv ] in changing 
from a fit to a quadratic relation in pressure to 
1\ cubic one is relatiwly large and amounts to 
about 50%. Because the limit of about 70% 
reduction assumed' in the first criterion is sub­
jective and could as well be taken as 50%, these 
three modes reprE'~ent borderline cases, and, by 
relaxing the stand:Hds of the first criterion 
slightly, their fit to a third-order polynomial 
could be just ified stat istit'ally. On the other 
hand, the corresponding t values of the coefli­
cients of po (i .e., n = 2) are for tV = 2 O\·er 
!\\;ce as large as those for N = 3, and the' 
coefficients are therefore more precise for N = 2 
than for N = 3. Thus one has the rhoirr of 
fitting these modes to a second-o rder poly-

nomial with standard errors of the coefficients 
of P' ranging from 4 to 7% or of fitting them to 
a third-order polynomial w'ith standard errors 
of the coefficients of P and 1>' am~unting to 
about 12 and 27%, re;;pectively. A decision 
between theoe two possibilities cannot be made 
on the basis of the first two criteria. As will 
be shown below, the third criterion is also ful­
filled for fitting these modes to a third-order. 
polynomial. Beca~!3e all other shear and quasi­
shear modes were fitted to second-order poly­
nomials, it was decided to fit modes 4, 6, and 'i 
for the sake of uniformity to second-order poly­
nomials also. It should be pointed out, however, 
that this assumptioll is an ad hoc one and intro­
duces a tmncation error of unknown mflgnitude. 
As will be shown below, this truncation error 
may, for the coefficients of P' for the pure shear 
mode;;, be as large as 50% but is likely to he 
sm:lller than this value. 

For the di~c1l5sion of the third criterion, the 
expan.<ion coefficients A;" as defined by (AI) 
find tllPir stand:l rd errors for N = 2 and n = 2, 
IV = 3 and /I = '2, and N = 3 and n = 3 for 
:Ill shrar and qlla5i-~hrar modes are list ed in 
Table' .'\:t ..'1.1.00 listpu are the a\"e'ra~e values 
(.4;') (If :dl modI'S brlon!!inl! to th(' ~:Ime ela~lic 
modulu;; :md their'stalllbrd error" ~ c:Ilculated 
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TABLE A2. Quantities t n
N = AnN/MlnN for Student's t Test for ' 

Coefficients of Least-Squares Fit of POW2 to a Polynomial in Pressure 

of Degree N according to POW2 = to An1lp1 for N = 2 and N =3 

N = 2 N = 3 N = 3 
Mode ...:- and and and 

-+ 
Coefficient No. N U Sample n = 2 . n = 2 11 = 3 

c44 1 [010] [001 ] 1 16.59 4.62 1.63 
2 [010] [001] 4 14'.45 2.96 0.51 
3 [001] [010] 1* 10.96 4.86 1.30 
4 [001] [010] , 1 15.10 7.12 3.55· 

css 5 [100] [001] 1 38.37 8.51 1.61 
6 [100] [001] 3 24.15 9.73 3.78 
7 [001] [100] 1 19.67 8~26 3.72 

c66 8 [l00] [010] 1 11.60 0.25 2.40 
9 [100] [010] 3* 5.70 1.93 3.27 

10 . [010] [100] 1 4.59 2.34 1.53 
11 [010) [100] 4 8.45 0.07 1..66 

cl2 12 elmO] [mID] 2* 10.26 2.76 1.00 
13 elmO] [mlO] 2 5.88 2.47 '1.43 

cn 14 [lOn] [nOr] 4* 8.95 0.002 1.72 
15 [lan] [nOI] 4* 7.99 1.64 0.30 

"-
[onin] c23 16 [Onm] 3* 15.84 3.60 0.90 

17 [Onm] [oniii] 3 10.64 1.96 0 . 64 

*Run made with Arenberg PSP AFC ultrasonic equipment. All other data 
were taken with MRL PSP AFC equipment. 

from tJ. = {[vv] /p(p - l)}tI., where [vv] is 
the sum of the squares of the p individual modes 
from the ayerage value (A;') T heEe quantities 
characterize the consistency of the yariO\lS modes 
for the same modulus. 

The third criterion can be quantitatively 
stated as the condition' that, for internal con-' 
Ei~cncy, the standard eTTors D.. mnst be smaller 
th:m or of approximat el~' the same magnitude 
~s the standard errors of the indi\'iduaJ modes 
ob,ained from the least-squa res data fit. 

From the data in Tahle .-\3 it is e\ ident that 
ior N = 2 the con~istency for ::111 shea r and 
quasi-shear modes is good to yery good. For 

N = 3 the coefficients of P' and P" are still 
consistent for the modes belonging to the moduli 
C .. , Cm, Cu, and C,3, but for t he moduli Ceo and c .. 
the coefficients are not consistent. In spite of 
the comistency found for N = 3 for the moduli 
C'" Cr.s, Ci", and C'" only a fit corresponding to 
N = 2 will be u~ed in these cases, since the 
data have been shown not to meet at least one 
of the fir5t and second' criteria. 

I t is also apparent from the data in Table A3 
that in changing from N = 2 to N = 3 the 
magnitude of the coefficient of P (i.e., A/) is 
increased by about 50%. The values of 0.1/ for 
N = 4 (not included in T able A3) lie between 

" 



. . 

• 

TABLE A3. Expansion Coefficients AnN with Standard Errors ~ 
00 

of W2 according to (AI) for Shear and Quasi-Shear Modes l~ 

Mode N = 2 and n = 2, N = 3 and n = 2, N = 3 and n = 3 
Coefficient No. N U Sample 10- 8em2 see- 2 kb-2 10-Sem2 see- 2 kb-2 10- Sem2 see- 2 kb!3 

a44 1 [010] [001 ] 1 -447 .± 27 -685 ± 148 16 ± 10 
2 [010] [001] 4 -501 ± 35 -60S ± 205 7 ± 13 
3 [001] [010] 1* -392 ± 36 -486 ± 100 10 ± 8 
4 [001] [010] 1 -361 ± 24 -711 ± 100 22 ± 6 

Average -425 ± 31 -622 · ± 51 14 ± 3 

aSS 5 [100] [001 ] 1 -917 ± 24 -1127 ± 132 13 ± 8 
6 [ 100] [001 ] 3 -806 ± 33 -1306 ± 134 32 :t 8 >rj 

~ 7 [001] r100] 1 -881 :t 45 -1584 ± 192 1\6 ± 12 ", ;:: Average -868 ± 33 -1339 ± 96 31 ± 10 r 
0 

[100] 
> 

a6S 8 [010] 1 -253 ± 22 30 ± 119 -19 ± 8 Yo 

9 [lOO] [010] 3* . -200 35 298 ± 155 -32 ± 10 0 
± 

t;:: 10 [010] [100] 1 -257 :t 56 -723 ± 309 30 ± 20 
--;:l 11 [010] [100] 4 -237 ± 28 10 ± 151 -16 ± 10 Of. 
t") 

Average -237 :t 13 -385 ± 459 -9 :t SO ;J; 

al2 12 - elmO] [mfO] 2* -459 :t 45 -714 ± 256 17 :t 17 
13 [lmO] [mrO] 2 -448 :t 76 -1037 .:t "419 40 :t 21 

Average -454 ± 35 -876 :t 115 29. :t 8 

c13 14 [ ZOn] [nOD 4* -632 ± 71 1 :t 374 -44 ± 25 
15 [ZOn] [nO Z] 4* -659· ± 83 -806 ± 491 10 ± 33 

Average -646 :t 10 -403 ± 285 -17 .t 19 

°23 16 [Onm] [Own] 3* -375 ± 24 -498 ± 139 8 :t 9 
17 [Onm] [ Oniii] 3 -349 :t 33 395 ± 201 2 :t 3 

Average -362 :t 9 -52 ± 315 5 :t 2 

*Run made with Arenberg PSP AFC ultrasonic equipment. All other data were taken with t-IRL PSP AFC 
equipment. 
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tho:;(> for N = 2 and X 3. and it, is there­
fore rrason~blc to exprct t ha't an increase of 
50% repres('J1ts an upper bouncl for the t runea­
tion error. To eliminate or reduce the truncation 
error for A .... all me~~\Ir(>m ('nts ,yould have to be 
extended to subst:mtially higher pres5ures and 
the data fitted to a poJ~'nomial of degree N 
greater than 3 or 4, suc-h that thi" fit would 
still be statistically significant and Ai'" would 
brcomc independent of X within its standa rd 
deviation. This task remains for the future. 
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